`

Java利用hanlp完成语句相似度分析的案例详解

 
阅读更多

 

分享一篇hanlp分词工具使用的小案例,即利用hanlp分词工具分析两个中文语句的相似度的案例。供大家一起学习参考!

 

在做考试系统需求时,后台题库系统提供录入题目的功能。在录入题目的时候,由于题目来源广泛,且参与录入题目的人有多位,因此容易出现录入重复题目的情况。所以需要实现语句相似度分析功能,从而筛选出重复的题目并人工处理之。

下面介绍如何使用Java实现上述想法,完成语句相似度分析:

1、使用HanLP完成分词:

首先,添加HanLP的依赖:(jsoup是为了处理题干中的html标签,去除html标签得到纯文本的题干内容)

 

 



 

分词代码如下,需要处理html标签和标点符号:

 

private static List<String> getSplitWords(String sentence) {

        // 去除掉html标签

        sentence = Jsoup.parse(sentence.replace(" ","")).body().text();

        // 标点符号会被单独分为一个Term,去除之

        return HanLP.segment(sentence).stream().map(a -> a.word).filter(s -> !"`~!@#$^&*()=|{}':;',\\[\\].<>/?~@#¥……&*()——|{}【】‘;:”“'。,、? ".contains(s)).collect(Collectors.toList());

    }

 

2、合并分词结果,列出所有的词:



 

 

3、统计词频,得到词频构成的向量:

代码如下,其中allWords是上一步中得到的所有的词,sentWords是第一步中对单个句子的分词结果:

 



 

4、计算相似度(两个向量的余弦值):



 

 

 

以上所有方法的完整代码如下,使用SimilarityUtil.getSimilarity(String s1,String s2)即可得到s1s2的语句相似度:

 

package com.yuantu.dubbo.provider.questionRepo.utils;

 

import com.hankcs.hanlp.HanLP;

import com.hankcs.hanlp.dictionary.CustomDictionary;

import org.jsoup.Jsoup;

 

import java.util.ArrayList;

import java.util.Calendar;

import java.util.Collections;

import java.util.List;

import java.util.stream.Collectors;

 

public class SimilarityUtil {

    static {

        CustomDictionary.add("子类");

        CustomDictionary.add("父类");

    }

 

    private SimilarityUtil() {

    }

    

    /**

     * 获得两个句子的相似度

     *

     * @param sentence1

     * @param sentence2

     * @return

     */

    public static double getSimilarity(String sentence1, String sentence2) {

        List<String> sent1Words = getSplitWords(sentence1);

        System.out.println(sent1Words);

        List<String> sent2Words = getSplitWords(sentence2);

        System.out.println(sent2Words);

        List<String> allWords = mergeList(sent1Words, sent2Words);

 

        int[] statistic1 = statistic(allWords, sent1Words);

        int[] statistic2 = statistic(allWords, sent2Words);

 

        double dividend = 0;

        double divisor1 = 0;

        double divisor2 = 0;

        for (int i = 0; i < statistic1.length; i++) {

            dividend += statistic1[i] * statistic2[i];

            divisor1 += Math.pow(statistic1[i], 2);

            divisor2 += Math.pow(statistic2[i], 2);

        }

 

        return dividend / (Math.sqrt(divisor1) * Math.sqrt(divisor2));

    }

 

    private static int[] statistic(List<String> allWords, List<String> sentWords) {

        int[] result = new int[allWords.size()];

        for (int i = 0; i < allWords.size(); i++) {

            result[i] = Collections.frequency(sentWords, allWords.get(i));

        }

        return result;

    }

 

    private static List<String> mergeList(List<String> list1, List<String> list2) {

        List<String> result = new ArrayList<>();

        result.addAll(list1);

        result.addAll(list2);

        return result.stream().distinct().collect(Collectors.toList());

    }

 

    private static List<String> getSplitWords(String sentence) {

        // 去除掉html标签

        sentence = Jsoup.parse(sentence.replace(" ","")).body().text();

        // 标点符号会被单独分为一个Term,去除之

        return HanLP.segment(sentence).stream().map(a -> a.word).filter(s -> !"`~!@#$^&*()=|{}':;',\\[\\].<>/?~@#¥……&*()——|{}【】‘;:”“'。,、? ".contains(s)).collect(Collectors.toList());

    }

}

---------------------

 

 

 

  • 大小: 25.3 KB
  • 大小: 23.1 KB
  • 大小: 24.1 KB
  • 大小: 64.4 KB
分享到:
评论

相关推荐

    语句相似度研究中的骨架依存分析

    ### 语句相似度研究中的骨架依存分析 #### 一、引言 随着自然语言处理技术的发展,尤其是在机器翻译领域,如何有效地评估语句之间的相似度成为了关键问题之一。传统的方法,例如基于规则的机器翻译(Rule-Based ...

    基于领域本体的语句相似度研究.pdf

    - **结果分析**:通过对实验数据的分析,验证了基于领域本体的语句相似度计算方法能够有效地区分不同语句间的相似程度,并在智能答疑系统中发挥重要作用。 #### 结论 本文献深入探讨了如何通过领域本体来计算语句...

    论文研究-多特征融合的语句相似度计算模型.pdf

    提出了一种可以解决SVM分类算法中的多重共线性问题的因子分析方法。因子分析的核心是用较少的互相独立的因子反映原有变量的绝大部分信息,它既能大大减少参与数据建模的变量个数,简化支持向量机结构,减少支持向量...

    语句相似度计算.zip

    标题中的“语句相似度计算”表明这是一个关于比较文本句子之间相似度的项目,而“基于Python的项目实现”提示我们整个实现是使用Python编程语言完成的。在给定的压缩包文件中,我们可以看到几个关键文件,这些文件将...

    Python实战语句相似度计算(毕设 + 课设).zip

    在这个"Python实战语句相似度计算"的项目中,我们将探讨如何利用Python来实现这个功能,尤其适用于毕业设计或课程设计的需求。 首先,我们需要了解几种常见的相似度计算方法。一种是基于编辑距离(Edit Distance)...

    达内java课件+经典案例详解+测试题(PPT)

    "达内java课件+经典案例详解+测试题(PPT)"提供了全面的学习资源,帮助初学者和进阶者深入理解Java编程的核心概念和实际应用。 首先,"达内JAVA课件PPT演示文稿(全)"是教学资源的重要组成部分,通常包含以下知识...

    Java案例详解1精通Java项目开发

    在本Java案例详解1精通Java项目开发中,我们将深入探讨如何使用Java技术构建高效、稳定的企业信息系统。这个案例主要基于Java编程语言,并结合SQL2000数据库管理系统,利用MyEclipse开发工具来实现。以下将详细介绍...

    Java打印漂亮的SQL语句(被格式化的SQL语句)

    标题提及的"Java打印漂亮的SQL语句(被格式化的SQL语句)"就是一种解决方案,它利用特定的工具或库将原本杂乱无章的SQL转换为结构清晰、简洁易读的形式。 描述中提到的jar包"PrettySQLFormatter"正是这样一个工具,它...

    JAVA经典100个小案例

    9. **函数式编程**:Java 8引入了Lambda表达式和Stream API,案例会展示如何利用这些新特性进行函数式编程。 10. **多线程**:Java支持并发编程,案例会讲解如何创建和管理线程,以及同步和互斥的概念。 通过这些...

    Java软件开发实战 Java基础与案例开发详解 3-8 跳转语句 共7页.pdf

    ### Java软件开发实战:跳转语句详解 #### 3-8 跳转语句 在Java编程中,跳转语句是非常重要的控制结构之一,它们能够改变程序的执行流程,使程序更加灵活和高效。Java支持三种跳转语句:`break`、`continue`和`...

    Java实验-循环语句,for,while,do-while

    Java循环语句详解 Java中的循环语句是指在一个程序中,重复执行某些语句的语句。循环语句有三种基本形式:for循环、while循环和do-while循环。每种循环语句都有其特点和使用场景。在本实验中,我们将详细介绍这三种...

    java案例分析 java 案例 好资源

    在这个“java案例分析”中,我们可以深入理解Java的核心概念和实际应用。这些案例旨在帮助学习者掌握Java编程的关键技巧,提升编程能力。 1. **基础语法与数据类型**:Java的基础包括变量声明、数据类型(如整型、...

    Java软件开发实战 Java基础与案例开发详解 3-7 循环语句 共11页.pdf

    ### Java软件开发实战:循环语句详解 #### 1. 循环语句的重要性 循环语句在程序设计中占据着极为重要的位置。通过循环,我们可以避免重复编写相同的代码,提高程序的效率和可读性。Java语言提供了三种类型的循环...

    java项目入门教材java案例分析pdf

    《Java项目入门教材Java案例分析》是一本专为初学者设计的编程教程,旨在帮助零基础的学员快速掌握Java编程语言,并通过实际案例深入理解Java在项目开发中的应用。这本书的特点在于其详尽的内容和丰富的实例,使得...

    中文句子相似度计算算法

    这一问题直接影响到后续的相似度计算步骤,尤其是涉及到词法分析和句法分析时。 4. **词法分析和句法分析的准确率较低** 由于汉语词汇间没有明显的分隔标记,自动分词成为汉语句法分析的基础,但目前的技术尚无法...

    性能优化案例分析与Oracle语句优化53个规则详解

    本文将深入探讨"性能优化案例分析与Oracle语句优化53个规则详解"这一主题,涵盖Oracle语句优化、数据库优化以及SQL优化的关键知识点。 首先,Oracle语句优化是提升系统性能的核心手段之一。在"Oracle语句优化53个...

    FPGA设计技巧与案例开发详解

    6. 案例分析:通过具体的设计案例,展示如何将理论知识应用于实际问题解决中。例如,设计一个简单的数字信号处理器、实现一个特定的通信协议、开发一个图像处理模块等。 7. 其他高级主题:可能会探讨一些更高级的...

    C语言中语句结构相似度的计算方法.pdf

    C语言中语句结构相似度的计算方法 在C语言程序的评价中,通常需要考虑如何表示和度量程序的结构。语句是程序的组成部分,语句和程序都具有结构,语句的结构是程序结构的一部分。因此,为了便于表示程序的结构,首先...

    Java Web开发详解案例

    在这个“Java Web开发详解案例”中,我们将深入探讨这个领域的主要技术和实践。 一、Servlet与JSP Servlet是Java Web开发的核心组件,用于处理HTTP请求。它们在服务器端运行,可以生成动态内容。JSP(JavaServer ...

    详解Java语言中的跳转语句.pdf

    Java语言中的跳转语句详解 Java语言中的跳转语句是程序设计中非常重要的一部分,它可以控制程序的执行流程,使程序更加灵活和可靠。然而,在Java语言中,并没有像其他语言一样的goto语句,而是使用break和continue...

Global site tag (gtag.js) - Google Analytics