`
壹佰案例
  • 浏览: 34325 次
  • 性别: Icon_minigender_2
  • 来自: 北京
社区版块
存档分类
最新评论

Google、微软、Linkedln、Uber、亚马逊等15+海外技术专家聚首2018TOP100Summit

阅读更多

11月30日-12月3日,由msup主办的第七届全球软件案例研究峰会(以下简称为TOP100Summit)将在北京国家会议中心举办。本届峰会以“释放AI生产力,让组织向智能化演进”作为开幕式主题, 4天的干货分享,18个主题方向,100+精选案例,旨在帮助高端IT从业者,解决平时无法解决的技术问题和疑惑,提升工作效率,实现技术认知上的提升,掌握本年度最前沿的科技。

 

此次大会我们不仅邀请了数百位国内知名大厂专家,还邀请了Google、微软、Linkedln、Uber、亚马逊、Zillow、GitLab、Hulu等17位海外一线技术大牛,共同为我们讲述他们的探索和发现与实践心得。现在大会正在紧锣密鼓的筹备阶段,让我们共同来看看海外讲师将为我们带来哪些优秀案例。

 

以下是海外讲师简介及案例主题:


 

演讲时间:

12月1日 13:30-14:30

演讲简述:

Many companies are focused on creating or transitioning to a microservice architecture. I will explain how this journey went for a top-tier video service & also a major games studio, and show the many advantages we found. In one company we successfully created 800+ services optimized around functionality, delivery speed and organizational structure. We won the microservices war!
However, getting there was only half the battle. Operating and evolving such significant systems reveals many challenges we hadn’t fully prepared for: monitoring and root cause analysis, cascading failures and scaling for major events are just some. We explain how you can use our learnings to avoid common pitfalls when working with microservices, and reveal what we would do differently if we could wind back the clock.


 

 

演讲时间:

12月2日 13:30-14:30

演讲简述:

In this talk, I will introduce how Google is able to integrate open-sourced data processing frameworks such as Hadoop and Spark within the entire cloud platform. We will go through details of service components and ways to best integrate the frameworks into cloud ecosystem. We will also discuss improvements and features that would bring the best of Hadoop/Spark and cloud to achieve optimal performance.



 

演讲时间:

12月3日 10:00-11:00

演讲简述:

As we transform LinkedIn to a place where members form communities around the things that matter most them, hashtags are foundational in enabling members to express what they want to talk about and find others who share the same interests. Hence it becomes imperative for us to improve LinkedIn’s Hashtag infrastructure by heavily investing in relevant domains such as personalization and recommendation, search vertical, feed serving stack, content filtering and SPAM/ Low-quality detection.



 

演讲时间:

12月1日 15:50-16:50

演讲简述:

广告系统中,有很多需要实时解决的问题。对于Pinterest这样月活2.5亿,图片量100B的平台来说,这些问题是什么?解决起来又有哪些挑战?希望通过本次分享,能够对具有相同情况的朋友起到抛砖引玉之效。



 

演讲时间:

12月1日 10:00-11:00

演讲简述:

Effective communication is one of key skills for any leaders. No matter what your role is, you are consistently communicating with the key stakeholders around you. Every communication is different depending on the goal and audience. It’s really important to get the communication right to get the right outcome. In this talk, we’ll discuss how we can make effective communication with storytelling.



 

演讲时间:

12月3日 11:00-12:00

演讲简述:

This talk tries to give an insider’s perspective on how Slack became the fastest-growing business application in history. 
●What is unique about Slack’s growth model that enabled this hyper growth? How has this model changed over time? 
●How does Slack organize growth teams? What kind of people do we hire? 
●What kind of growth strategies and tactics did Slack focus on at different stages of the company? What are the lessons learned?



 

演讲时间:

12月1日 15:50-16:50

演讲简述:

The talk intends to:
1.Share the benefit of building for diverse customer segments
2.Discuss principles to apply in different stages of the product development and real-life examples: 
a.In product definition/design phase – how you should frame the customer problem with inclusiveness in mind to provide best solution
b.In development phase – how to incorporate inclusiveness thinking into process and coding practices
c.In general – how we should think about user research and how to incorporate user feedback 
3.Share learnings on how to embrace diversity helps foster a healthy team dynamics. 



 

演讲时间:

12月2日 9:00-10:00

演讲简述:

We have built a Conversational AI that understands the business metrics a users asks, fetches the data from different databases, join multiple sources together if needed, generates meaningful visualizations to help the user navigate insights from the data, and all of these processes happen on the fly instantaneously. This largely reduces the time we spent on finding the right data sources, learning the join keys, understanding the exact formulas needed to calculate a KPI, etc. All of this was realized using different types of Microsoft products and can be applied to any company, or any different domains.
We have been building a platform where any team can onboard their own data into the system, define the business scenarios they have, and the platform will take care of the rest: generating synthetic data to train the NLP model, generating scripts for visualization, getting connected to the UI/application that the user wants to use to ask questions. 

 



 

演讲时间:

12月1日 11:00-12:00

演讲简述:

GitLab is an application for the entire DevOps lifecycle. We entered the portfolio management market in late 2017 with a new product category. By leveraging a unique process of having customers embedded in our DevOps lifecycle, we were able to ship the feature in one month with a small team, and attract customers to this new offering in our new highest tier offering at over 1000 USD per user.

 

 



 

演讲时间:

12月2日 10:00-11:00

演讲简述:

Traditionally, web applications have been developed in a single programming language and code that is built, deployed and scaled as one (probably large) “monolithic” unit. More recently, engineering teams are moving away from monolithic applications and turning to microservices. Microservice architectures allow teams to independently develop and deploy smaller software services (even in different programming languages) that are easier to understand and safer to modify. These smaller services integrate with each other not by code compilation but rather by sending remote procedure calls (using, for example, REST or gRPC) at runtime. As a result, microservice architectures have many more runtime dependencies and interconnections. These interconnections present new challenges for software testing. In this talk, we will discuss various techniques for unit and integration testing when using microservice architectures. Instead of making extensive use of interfaces and mock or stub objects.




 

演讲时间:

12月3日 14:30-15:30

演讲简述:

From determining the most convenient rider pickup points to predicting the fastest routes, Uber uses machine learning and data-driven analytics to create seamless trip experiences.
Inside Uber, big data and machine learning are spread everywhere. Analysts and Engineers would like to run real time analytics with deep learning models. While, copy data from one source to another is pretty expensive. It is challenging to support real time analytics with deep learning.
This talk will share Uber’s engineering effort, supporting real time analytics with deep learning on the fly, without any data copy. We will start with our big data and deep learning infrastructure, specifically Tensorflow, Hadoop, and Presto. Then we will talk about how Uber used Tensorflow as deep learning engine, and Presto as the interactive SQL engine. We will focus on how Uber built Presto Tensorflow Connector from scratch, to support real time analytics on deep learning. Finally, we will share our production experien.



 

演讲时间:

12月1日 16:50-17:50

演讲简述:

亚马逊作为一个靠电商起家,经过二十多年发展成为一个背靠电商,AWS,Alexa的综合创新型公司。正是亚马逊核心文化中的领导力原则(Leadership principle)让亚马逊保持着持续创新的动力,拥有较高的用户满意度,撑起了将近万亿的市值。我将会结合Alexa团队以及自身的故事,逐一剖析拆解亚马逊的14条领导力原则。是怎样的运转机制,让亚马逊从上到下每一个团队如同一个个小的创业公司,高效的前行。

 

 



 

演讲时间:

12月1日 10:00-11:00

演讲简述:

本次分享主要介绍,LINE全球團隊每天都在使用的內部軟件發布系統其架構演進的過程,最新的進展是轉變為容器化架構。那,當初為何決定走向容器化?途中有沒有遇到什麼問題?如何解決?將是分享之重點。



 

演讲时间:

12月2日 10:00-11:00

演讲简述:

Spotify 作为世界用户量最多的的付费音乐流媒体公司, 这几年一直转型通过运用大数据+小数据的方法提升产品和体验。在2017如何改版免费用户端产品提升歌单,个性化推荐取得巨大的留存率提升的。如何通过不断的设计和AB测试改造电脑客户端产品、设计系统和品牌的提升来drive其他平台的使用的。
通过组织架构调整(DPI)适应高速的数据需求。

 



 

演讲时间:

12月1日 9:00-10:00

演讲简述:

 

如何从0到1实现一个高可用的系统,解决实际的Uber for Business业务问题。通过具体的项目需求和系统架构,包括支付系统,账单系统, Policy系统来分析如何end to end完成这些系统。



 

演讲时间:

12月2日 14:30-15:30

演讲简述:

自动补全和自动建议是搜索领域里重要的议题。智能的自动补全和自动建议可以帮助用户快速表达搜索意图。这一点在用户搜索越来越多地从桌面设备转向移动设备这一趋势下越来越重要。这个报告侧重房地产搜索这一垂直领域。



 

演讲时间:

12月1日 11:00-12:00

演讲简述:

本分享来自于Google的产品经理。从智能化产品管理的新挑战出发,阐述了在AI时代,产品经理需要哪些新技能,如何成功定义一个好的智能产品。

除以上众多海外案例之外,小米、知乎、Google、BAT等知名大厂讲师也将出席大会,现TOP100大会日程(100+案例实践)已全部出炉,如果你不想错过这次宝贵的交流机会,就快来报名吧!

 



 

想了解大会更多内容?请点击“阅读原文”或识别图中二维码,查看大会超全日程!

 

 

  • 大小: 62.5 KB
  • 大小: 62.3 KB
  • 大小: 62.2 KB
  • 大小: 63.4 KB
  • 大小: 63.4 KB
  • 大小: 58.7 KB
  • 大小: 58.2 KB
  • 大小: 66.8 KB
  • 大小: 71.9 KB
  • 大小: 60.4 KB
  • 大小: 79 KB
  • 大小: 67.1 KB
  • 大小: 63 KB
  • 大小: 64.5 KB
  • 大小: 51.3 KB
  • 大小: 65 KB
  • 大小: 45.8 KB
  • 大小: 232.2 KB
分享到:
评论

相关推荐

    Linkedln技术高管JayKreps:Lambda架构剖析

    JayKreps是Linkedln的一名在线数据架构技术高管,其负责Linkedln开源项目,包括ApacheKafka、ApacheSamza、Voldemort以及Azkaban等项目。在日常工作中,JayKreps经常被问及有关Lambda架构的问题,为此他结合实际经验...

    linkedln_learning:python主题

    这个"linkedln_learning:python主题"的学习资源旨在帮助用户深入理解和掌握Python的精髓,提升其在实际项目中的应用能力。以下是根据该主题可能涉及的一些核心知识点的详细解析: 1. **Python基础**:这包括变量、...

    领英:2019人才流动与薪酬趋势报告.pdf

    从报告中可以看出,尽管人才流动规模下降,但新一线城市在人才吸引方面呈现崛起之势,如15个新一线城市在吸引海外归国人才和国内高端人才方面表现突出。尽管薪酬与一线城市相比仍有差距,但其增长势头不容小觑。 ...

    LinkedInLearningSQL:LinkedIn学习SQL课程的注意事项

    LinkedIn学习-学习SQL编程学习领域/实践方法结合使用SQLite和DB浏览器界面来编写查询和练习SQL语言练习使用版本控制软件将注释上载到github以供以后参考利用Markdown语言有效地跟踪个人课程笔记介绍数据库按列(字段...

    Analog-Clock:这是我从Linkedln学习中创建的一个简单项目。 这个项目的主要重点是展示我对JavaScript的理解

    在这个名为"Analog-Clock"的项目中,开发者利用JavaScript技术构建了一个模拟时钟,旨在展示其对这门编程语言的掌握程度。JavaScript是一种广泛应用于网页和网络应用开发的脚本语言,它允许动态内容的创建,使得网页...

    linkedin-crawler:用于LinkedIn个人资料页面的网络爬虫

    【标题】:“linkedin-crawler: LinkedIn个人资料页面的网络爬虫”...理解和使用这个工具,可以帮助我们更便捷地获取和分析LinkedIn上的职业信息,但同时也需要注意遵循网络道德和法律法规,合理、合法地使用爬虫技术。

    kafka_2.12-3.6.0.tgz

    Kafka :最初是由 Linkedln 公司采用 Scala 语言开发的一个多分区、多副本并且基于 ZooKeeper 协调的分布式消息系统,现在已经捐献给了 Apache 基金会。目前 Kafka 已经定位为一个分布式流式处理平台,它以高吞吐、...

    kafka_2.12-3.5.1.tgz

    Kafka :最初是由 Linkedln 公司采用 Scala 语言开发的一个多分区、多副本并且基于 ZooKeeper 协调的分布式消息系统,现在已经捐献给了 Apache 基金会。目前 Kafka 已经定位为一个分布式流式处理平台,它以高吞吐、...

    kafka_2.12-3.6.2.tgz

    Kafka :最初是由 Linkedln 公司采用 Scala 语言开发的一个多分区、多副本并且基于 ZooKeeper 协调的分布式消息系统,现在已经捐献给了 Apache 基金会。目前 Kafka 已经定位为一个分布式流式处理平台,它以高吞吐、...

    kafka_2.13-2.8.2.tgz

    Kafka :最初是由 Linkedln 公司采用 Scala 语言开发的一个多分区、多副本并且基于 ZooKeeper 协调的分布式消息系统,现在已经捐献给了 Apache 基金会。目前 Kafka 已经定位为一个分布式流式处理平台,它以高吞吐、...

    kafka_2.13-3.1.2.tgz

    Kafka :最初是由 Linkedln 公司采用 Scala 语言开发的一个多分区、多副本并且基于 ZooKeeper 协调的分布式消息系统,现在已经捐献给了 Apache 基金会。目前 Kafka 已经定位为一个分布式流式处理平台,它以高吞吐、...

    kafka_2.12-3.1.2.tgz

    Kafka :最初是由 Linkedln 公司采用 Scala 语言开发的一个多分区、多副本并且基于 ZooKeeper 协调的分布式消息系统,现在已经捐献给了 Apache 基金会。目前 Kafka 已经定位为一个分布式流式处理平台,它以高吞吐、...

    kafka_2.13-3.6.0.tgz

    Kafka :最初是由 Linkedln 公司采用 Scala 语言开发的一个多分区、多副本并且基于 ZooKeeper 协调的分布式消息系统,现在已经捐献给了 Apache 基金会。目前 Kafka 已经定位为一个分布式流式处理平台,它以高吞吐、...

    kafka_2.13-2.6.3.tgz

    Kafka :最初是由 Linkedln 公司采用 Scala 语言开发的一个多分区、多副本并且基于 ZooKeeper 协调的分布式消息系统,现在已经捐献给了 Apache 基金会。目前 Kafka 已经定位为一个分布式流式处理平台,它以高吞吐、...

    kafka_2.12-2.6.3.tgz

    Kafka :最初是由 Linkedln 公司采用 Scala 语言开发的一个多分区、多副本并且基于 ZooKeeper 协调的分布式消息系统,现在已经捐献给了 Apache 基金会。目前 Kafka 已经定位为一个分布式流式处理平台,它以高吞吐、...

    Linkedin测验答案,技能评估测试-Python开发

    完整的LinkedIn参考答案2021,以进行技能评估,LinkedIn测试,问题和答案(aws-lambda,rest-api,javascript,react,git,html,jquery,mongodb,java,css,python,机器学习,power-point )linkedin excel测试...

    我的学习网站分享.html

    第一次学习html制作了一个学习网站 有名气的学习网站 edX Coursera TED 中国大学MOOC 学堂在线 我要自学网 每日一文 JavaScript Linkedln java w3school

    HigorRoc

    Higor Rocha费尔南德斯·达席尔瓦 Olápessoal,Sejam bem vindos ao meu Github!... :magnifying_glass_tilted_right: Linkedln :globe_with_meridians: Skype :camera_with_flash: Instagram 恩

    屏幕阅读器为Quora「screenreader for Quora」-crx插件

    屏幕阅读器功能丰富,功能齐全,分享评论等功能 铬的屏幕阅读器为盲人 也可能只是需要休息一下眼睛的正常视力的人 所以这里是基本的功能keymap (请注意这不是quora的官方扩展,我不属于quora) 首先,安装扩展后...

Global site tag (gtag.js) - Google Analytics