1.堆:堆是一种树,由它实现的优先级队列的插入和删除的时间复杂度都是O(logn),用堆实现的优先级队列虽然和数组实现相比较删除慢了些,但插入的时间快的多了。当速度很重要且有很多插入操作时,可以选择堆来实现优先级队列。
优先队列可以用堆实现也可用数组实现
一般用来存树(包括堆)的数组都是树的层序遍历的结果
堆的顺序是弱序的只是保证垂直路劲上有顺序(移除添加之后新的还是有顺序,最顶端的是最值,当把全部出来的拼在一起就有序了),水平顺序上无序,不像平衡二叉树是严格的顺序,堆只能用来弹出最大、最小值
2.java的堆和数据结构堆:java的堆是程序员用new能得到的计算机内存的可用部分。而数据结构的堆是一种特殊的二叉树。
3.堆是具有如下特点的二叉树:
3.1.它是完全二叉树,也就是说除了树的最后一层节点不需要是满的,其他的每一层从左到右都必须是满的。
3.1.1.完全二叉树图解:
3.2.它常常用数组实现。
3.2.1.数组和堆的对应关系示意图:
3.3.堆中每一个节点都满足堆的条件,也就是说每一个关键字的值都大于或等于这个节点的子节点的关键字值。
堆是完全二叉树的事实说明了表示堆的数组中没有空项,即从0-->n-1的每个数据单元都有数据项。
4.堆在存储器中的表示是数组,堆只是一个概念上的表示。
5.堆的弱序:堆和二叉搜索树相比是弱序的,在二叉搜索树中,当前节点的值总是比左子节点的值大,却比它的右子节点的值小,因此按序遍历相对容易。而堆的组织规则弱,它只要求从根到叶子节点的每一条路径,节点都是按降序排列的。同一节点的左右子节点都没有规律。因此,堆不支持按序遍历,也不能在堆上便利的查找指定关键字,因为在查找的过程中,没有足够的信息决定选择通过节点的两个那一个走向下一层。它也不能在少于O(logn)的时间内删除一个指定的节点,因为没有办法找到这个节点。因此,堆的这种近乎无序的规则似乎毫无用处,不过对于快速移除最大节点的操作,以及快速插入新节点的操作,这种顺序已经足够了。这些操作是使用堆作为优先级队列所需要的全部操作。
6.移除操作:移除是指删掉关键字值最大的节点,即根节点。移除思路如下:
6.1.移走根,
6.2.把左后一个节点移到根的位置,
6.3.一直向下筛选这个节点,知道它在一个大于它的节点之下,小于它的节点之上为止。
6.4.过程图解:
说明:在被筛选节点的每个暂时停留的位置,向下筛选的算法总是要检查那一个子节点更大,然后目标节点和较大的子节点交换位置,如果要把目标节点和较小的子节点交换,那么这个子节点就会变成大子节点的父节点,这就违背了堆的条件。
7.堆的插入:插入使用向上筛选,节点最后插入到数组最后第一个空着的单元中,数组容量大小增加1。
7.1.插入图解:
说明:向上筛选的算法比向下筛选的算法相对简单,因为它不需要比较两个子节点关键字值的大小,节点只有一个父节点。目标节点主要和它的父亲节点换位即可。
7.2.不是真的交换:
8.用数组表示一棵树时,如果数组中节点的索引位x,则
a.它的父节点的下标是:(x-1)/2;
b.它的左子节点的下标为2*x + 1;
c.它的右子节点的下标是2*x + 2;
9.堆的代码:
9.1.Node.java

1 package com.cn.heap; 2 /** 3 * 堆的节点类 4 * @author Administrator 5 * 6 */ 7 public class Node { 8 private int iData; 9 public Node(int id){ 10 iData = id; 11 } 12 public int getkey(){ 13 return iData; 14 } 15 public void setkey(int id){ 16 iData = id; 17 } 18 }
9.2.Heap.java

1 package com.cn.heap; 2 /** 3 * 堆的实现类 4 * @author Administrator 5 * 6 */ 7 public class Heap { 8 private Node[] heapArray; 9 private int maxSize; 10 private int currentSize; 11 public Heap(int mx){ 12 maxSize = mx; 13 heapArray = new Node[maxSize]; 14 currentSize = 0; 15 } 16 public boolean isEmpty(){ 17 return currentSize == 0 ; 18 } 19 public boolean insert(int key){ 20 if (currentSize == maxSize) 21 return false; 22 Node thenode = new Node(key); 23 heapArray[currentSize] = thenode; 24 trickleUp(currentSize ++); 25 return true; 26 } 27 public void trickleUp(int index){ 28 int parent = (index - 1) / 2; 29 Node bottom = heapArray[index]; 30 while (index > 0 && heapArray[parent].getkey() < bottom.getkey()){ 31 heapArray[index] = heapArray[parent]; 32 index = parent; 33 parent = (parent - 1) / 2; 34 } 35 heapArray[index] = bottom; 36 } 37 public Node remove(){ 38 Node root = heapArray[0]; 39 heapArray[0] = heapArray[-- currentSize]; 40 trickleDown(0); 41 return root; 42 } 43 public void trickleDown(int index){ 44 int largeChild; 45 Node top = heapArray[index]; 46 while (index < currentSize / 2){ 47 int leftChild = 2 * index + 1; 48 int rightChild = 2 * index + 2; 49 if (rightChild < currentSize && heapArray[leftChild].getkey() < heapArray[rightChild].getkey()) 50 largeChild = rightChild; 51 else 52 largeChild = leftChild; 53 if (top.getkey() >= heapArray[largeChild].getkey()) 54 break; 55 heapArray[index] = heapArray[largeChild]; 56 index = largeChild; 57 } 58 heapArray[index] = top; 59 } 60 public boolean change(int index,int newvalue){ 61 if (index < 0 || index >=currentSize) 62 return false; 63 int oldvalue = heapArray[index].getkey(); 64 heapArray[index].setkey(newvalue); 65 if (oldvalue < newvalue) 66 trickleUp(index); 67 else 68 trickleDown(index); 69 return true; 70 } 71 public void displayHeap(){ 72 System.out.print("heapArray:"); 73 for (int i = 0; i < currentSize; i++) { 74 if (heapArray[i] != null) 75 System.out.print(heapArray[i].getkey()+" "); 76 else 77 System.out.print("--"); 78 } 79 System.out.println(""); 80 int nBlanks = 32; 81 int itemsPerrow = 1; 82 int column = 0; 83 int j = 0; 84 String dots = "........................"; 85 System.out.println(dots + dots); 86 while (currentSize > 0){ 87 if (column == 0) 88 for (int i = 0; i < nBlanks; i++) { 89 System.out.print(" "); 90 } 91 System.out.print(heapArray[j].getkey()); 92 if (++ j == currentSize) 93 break; 94 if (++ column == itemsPerrow){ 95 nBlanks /= 2; 96 itemsPerrow *= 2; 97 column = 0; 98 System.out.println(); 99 } 100 else 101 for (int i = 0; i < nBlanks * 2 - 2; i++) 102 System.out.print(' '); 103 } 104 System.out.println("\n"+dots + dots); 105 } 106 }
9.3.HTest.java

1 package com.cn.heap; 2 /** 3 * heap类的测试 4 * @author Administrator 5 * 6 */ 7 public class HTest { 8 public static void main(String[] args) { 9 Heap h = new Heap(10); 10 h.insert(10); 11 h.insert(30); 12 h.insert(20); 13 h.insert(18); 14 h.insert(12); 15 h.displayHeap(); 16 h.remove(); 17 h.displayHeap(); 18 } 19 }
10.堆的效率:上述操作的时间复杂度是:O(logn)。
11.堆排序实现思路:使用insert()向堆中插入所有无序的数据项,然后重复使用remove()方法,就可以按序移除所有数据项,它的效率和快速排序类似,都是O(NlogN),但快排稍微快些,因为堆插入时的向下筛选多出的比较所占用的时间。
11.1.Node.java

1 package com.cn.heap; 2 /** 3 * 堆的节点类 4 * @author Administrator 5 * 6 */ 7 public class Node { 8 private int iData; 9 public Node(int id){ 10 iData = id; 11 } 12 public int getkey(){ 13 return iData; 14 } 15 public void setkey(int id){ 16 iData = id; 17 } 18 }
11.2.Heap.java

1 package com.cn.heap; 2 /** 3 * 堆的实现类 4 * @author Administrator 5 * 6 */ 7 public class Heap { 8 private Node[] heapArray; 9 private int maxSize; 10 private int currentSize; 11 public Heap(int mx){ 12 maxSize = mx; 13 heapArray = new Node[maxSize]; 14 currentSize = 0; 15 } 16 public boolean isEmpty(){ 17 return currentSize == 0 ; 18 } 19 public boolean insert(int key){ 20 if (currentSize == maxSize) 21 return false; 22 Node thenode = new Node(key); 23 heapArray[currentSize] = thenode; 24 trickleUp(currentSize ++); 25 return true; 26 } 27 public void trickleUp(int index){ 28 int parent = (index - 1) / 2; 29 Node bottom = heapArray[index]; 30 while (index > 0 && heapArray[parent].getkey() < bottom.getkey()){ 31 heapArray[index] = heapArray[parent]; 32 index = parent; 33 parent = (parent - 1) / 2; 34 } 35 heapArray[index] = bottom; 36 } 37 public Node remove(){ 38 Node root = heapArray[0]; 39 heapArray[0] = heapArray[-- currentSize]; 40 trickleDown(0); 41 return root; 42 } 43 public void trickleDown(int index){ 44 int largeChild; 45 Node top = heapArray[index]; 46 while (index < currentSize / 2){ 47 int leftChild = 2 * index + 1; 48 int rightChild = 2 * index + 2; 49 if (rightChild < currentSize && heapArray[leftChild].getkey() < heapArray[rightChild].getkey()) 50 largeChild = rightChild; 51 else 52 largeChild = leftChild; 53 if (top.getkey() >= heapArray[largeChild].getkey()) 54 break; 55 heapArray[index] = heapArray[largeChild]; 56 index = largeChild; 57 } 58 heapArray[index] = top; 59 } 60 public boolean change(int index,int newvalue){ 61 if (index < 0 || index >=currentSize) 62 return false; 63 int oldvalue = heapArray[index].getkey(); 64 heapArray[index].setkey(newvalue); 65 if (oldvalue < newvalue) 66 trickleUp(index); 67 else 68 trickleDown(index); 69 return true; 70 } 71 public void displayHeap(){ 72 System.out.print("heapArray:"); 73 for (int i = 0; i < currentSize; i++) { 74 if (heapArray[i] != null) 75 System.out.print(heapArray[i].getkey()+" "); 76 else 77 System.out.print("--"); 78 } 79 System.out.println(""); 80 int nBlanks = 32; 81 int itemsPerrow = 1; 82 int column = 0; 83 int j = 0; 84 String dots = "........................"; 85 System.out.println(dots + dots); 86 while (currentSize > 0){ 87 if (column == 0) 88 for (int i = 0; i < nBlanks; i++) { 89 System.out.print(" "); 90 } 91 System.out.print(heapArray[j].getkey()); 92 if (++ j == currentSize) 93 break; 94 if (++ column == itemsPerrow){ 95 nBlanks /= 2; 96 itemsPerrow *= 2; 97 column = 0; 98 System.out.println(); 99 } 100 else 101 for (int i = 0; i < nBlanks * 2 - 2; i++) 102 System.out.print(' '); 103 } 104 System.out.println("\n"+dots + dots); 105 } 106 public void displayArray(){ 107 for (int i = 0; i < maxSize; i++) 108 System.out.print(heapArray[i].getkey()+" "); 109 System.out.println(); 110 } 111 public void insertAt(int index,Node newnode){ 112 heapArray[index] = newnode; 113 } 114 public void incrementSize(){ 115 currentSize ++; 116 } 117 }
11.3.HeapSort.java

1package com.cn.heap; 2 3import java.util.Scanner; 4 5/** 6 * 基于堆的排序----堆排序 7 * @author Administrator 8 * 9*/10publicclass HeapSort { 11publicstaticvoid main(String[] args) { 12int size,j; 13 Scanner in = new Scanner(System.in); 14 System.out.print("Enter number of items: "); 15 size = in.nextInt(); 16 Heap theheap = new Heap(size); 17for (int i = 0; i < size; i++) { 18int random = (int)(Math.random()*100); 19 Node node = new Node(random); 20 theheap.insertAt(i, node); 21 theheap.incrementSize(); 22 } 23 System.out.print("random: "); 24 theheap.displayArray(); 25for (int i = size / 2 - 1; i >= 0; i --) { 26 theheap.trickleDown(i); 27 } 28 System.out.print("heap: "); 29 theheap.displayArray(); 30 theheap.displayHeap(); 31for (int i = size - 1; i >= 0; i --) { 32 Node node = theheap.remove(); 33 theheap.insertAt(i,node); 34 } 35 System.out.print("sorted: "); 36 theheap.displayArray(); 37} 38 } 参考: https://www.cnblogs.com/g177w/p/8469399.html
相关推荐
本学习资料包"java数据结构--学习"聚焦于如何在Java环境下理解和应用各种数据结构,旨在提升开发者的技术水平,使其能够编写出更加高效和优化的代码。 1. **数组**:数组是最基本的数据结构,用于存储同类型元素的...
Java作为广泛应用的编程语言,其在实现数据结构和算法时有着丰富的库支持和优秀的可读性。下面将对标题和描述中提到的一些关键知识点进行详细解释。 1. **数据结构**: - **稀疏数组**:当大量数据中大部分为零或...
主要内容包括:算法效率的输入规模、阶和大O,数据结构的无序和有序列表,队列和栈基于数组和链表的设计实例,递归详解,二叉查找树和AVL树,堆、散列表和排序以及图论等。对于每一种数据结构的性质和用途,《计算机...
在IT领域,尤其是在编程世界,数据结构是至关重要的一个概念,尤其对于Java开发者而言。数据结构是组织、管理和存储数据的方式,它允许我们高效地访问和修改数据。本资源包"java---数据结构"显然是针对Java程序员...
《Java数据结构和算法-带书签目录扫描版》是一本深入探讨Java编程语言中数据结构和算法的书籍。此扫描版特别包含了完整的书签目录,使得读者在电子版阅读时能够快速定位到所需章节,提高了学习和查阅的效率。 在...
"java-data-struct.rar_数据结构 java_数据结构源码"这个压缩包文件包含了用Java实现的数据结构的相关代码,对于学习和理解数据结构的实现具有很高的参考价值。 1. **链表(LinkedList)**:链表是一种线性数据结构...
资源摘要信息是关于Java数据结构和算法的知识点总结,涵盖了数组、栈与队列、链表、递归、哈希表、高级排序、二叉树、红黑树、堆、带权图等数据结构和算法概念。 一、数组 * 数组是相同类型变量的集合,可以使用...
### Java数据结构与算法学习笔记知识点总结 #### 一、数据结构概述 数据结构是对数据的一种组织形式,它决定了数据的存储方式以及处理数据的方法。常见的数据结构包括但不限于数组、链表、栈、队列、二叉树、图等...
在最小堆中,树的根节点是所有节点中最小的,这种数据结构常用于实现优先队列、堆排序以及其它需要快速找到最小元素的算法。 Java是一种广泛使用的编程语言,它提供了一种面向对象的编程范式。在Java中实现最小堆...
【Java定时器与数据结构详解】 1. **定时器(Timer)** - 定时器在Java中用于安排在将来某个时间点执行的任务。它使用`java.util.Timer`类和`java.util.TimerTask`类来实现。`TimerTask`是实现定时任务的基础,它...
《Java数据结构和算法》第二版是一本深入探讨Java编程中数据结构与算法的权威书籍。这本书涵盖了在软件开发中至关重要的基础知识,旨在帮助程序员提升解决问题的能力和代码效率。高清扫描版提供了清晰的文本和图表,...
C、C++和Java都是广泛使用的编程语言,它们在处理数据结构和算法时各有特点。以下是对这三种语言在数据结构与算法方面的一些关键知识点的详细阐述: 1. **数据结构**: - **数组**:基本的数据结构,用于存储同...
在Java面试中,数据结构是不可或缺的一个重要环节,因为它直接影响到程序的效率和设计质量。本资料包"面试-Java一些常见面试题+题解之数据结构-DataStructure.zip"聚焦于Java中的数据结构,旨在帮助求职者更好地准备...
《Java-C-JS数据结构与算法合集》是针对编程领域的三大主流语言——Java、C和JavaScript,深入探讨数据结构与算法的宝贵资源。数据结构是计算机存储、组织数据的方式,而算法是解决问题的精确步骤,它们是软件开发的...
### Java版数据结构知识点概述 #### 一、引言 《Java版数据结构》是一部针对Java程序员的经典之作,由Robert Lafore撰写。本书不仅适用于初学者,也适合那些希望深入理解数据结构与算法的高级开发者。它通过清晰、...