来源:https://www.cnblogs.com/baizhanshi/p/6419268.html
Java并发编程:Lock
今天看了并发实践这本书的ReentantLock这章,感觉对ReentantLock还是不够熟悉,有许多疑问,所有在网上找了很多文章看了一下,总体说的不够详细,重点和焦点问题没有谈到,但这篇文章相当不错,说的很全面,主要的重点都说到了,所有在这里转载了这篇文章。
在上一篇文章中我们讲到了如何使用关键字synchronized来实现同步访问。本文我们继续来探讨这个问题,从Java 5之后,在java.util.concurrent.locks包下提供了另外一种方式来实现同步访问,那就是Lock。
也许有朋友会问,既然都可以通过synchronized来实现同步访问了,那么为什么还需要提供Lock?这个问题将在下面进行阐述。本文先从synchronized的缺陷讲起,然后再讲述java.util.concurrent.locks包下常用的有哪些类和接口,最后讨论以下一些关于锁的概念方面的东西
以下是本文目录大纲:
一.synchronized的缺陷
二.java.util.concurrent.locks包下常用的类
三.锁的相关概念介绍
一.synchronized的缺陷
synchronized是java中的一个关键字,也就是说是Java语言内置的特性。那么为什么会出现Lock呢?
在上面一篇文章中,我们了解到如果一个代码块被synchronized修饰了,当一个线程获取了对应的锁,并执行该代码块时,其他线程便只能一直等待,等待获取锁的线程释放锁,而这里获取锁的线程释放锁只会有两种情况:
1)获取锁的线程执行完了该代码块,然后线程释放对锁的占有;
2)线程执行发生异常,此时JVM会让线程自动释放锁。
那么如果这个获取锁的线程由于要等待IO或者其他原因(比如调用sleep方法)被阻塞了,但是又没有释放锁,其他线程便只能干巴巴地等待,试想一下,这多么影响程序执行效率。
因此就需要有一种机制可以不让等待的线程一直无期限地等待下去(比如只等待一定的时间或者能够响应中断),通过Lock就可以办到。
再举个例子:当有多个线程读写文件时,读操作和写操作会发生冲突现象,写操作和写操作会发生冲突现象,但是读操作和读操作不会发生冲突现象。
但是采用synchronized关键字来实现同步的话,就会导致一个问题:
如果多个线程都只是进行读操作,所以当一个线程在进行读操作时,其他线程只能等待无法进行读操作。
因此就需要一种机制来使得多个线程都只是进行读操作时,线程之间不会发生冲突,通过Lock就可以办到。
另外,通过Lock可以知道线程有没有成功获取到锁。这个是synchronized无法办到的。
总结一下,也就是说Lock提供了比synchronized更多的功能。但是要注意以下几点:
1)Lock不是Java语言内置的,synchronized是Java语言的关键字,因此是内置特性。Lock是一个类,通过这个类可以实现同步访问;
2)Lock和synchronized有一点非常大的不同,采用synchronized不需要用户去手动释放锁,当synchronized方法或者synchronized代码块执行完之后,系统会自动让线程释放对锁的占用;而Lock则必须要用户去手动释放锁,如果没有主动释放锁,就有可能导致出现死锁现象。
二.java.util.concurrent.locks包下常用的类
下面我们就来探讨一下java.util.concurrent.locks包中常用的类和接口。
1.Lock
首先要说明的就是Lock,通过查看Lock的源码可知,Lock是一个接口:
1
2
3
4
5
6
7
8
|
public interface Lock {
void lock();
void lockInterruptibly() throws InterruptedException;
boolean tryLock();
boolean tryLock( long time, TimeUnit unit) throws InterruptedException;
void unlock();
Condition newCondition();
} |
下面来逐个讲述Lock接口中每个方法的使用,lock()、tryLock()、tryLock(long time, TimeUnit unit)和lockInterruptibly()是用来获取锁的。unLock()方法是用来释放锁的。newCondition()这个方法暂且不在此讲述,会在后面的线程协作一文中讲述。
在Lock中声明了四个方法来获取锁,那么这四个方法有何区别呢?
首先lock()方法是平常使用得最多的一个方法,就是用来获取锁。如果锁已被其他线程获取,则进行等待。
由于在前面讲到如果采用Lock,必须主动去释放锁,并且在发生异常时,不会自动释放锁。因此一般来说,使用Lock必须在try{}catch{}块中进行,并且将释放锁的操作放在finally块中进行,以保证锁一定被被释放,防止死锁的发生。通常使用Lock来进行同步的话,是以下面这种形式去使用的:
1
2
3
4
5
6
7
8
9
|
Lock lock = ...; lock.lock(); try {
//处理任务
} catch (Exception ex){
} finally {
lock.unlock(); //释放锁
} |
tryLock()方法是有返回值的,它表示用来尝试获取锁,如果获取成功,则返回true,如果获取失败(即锁已被其他线程获取),则返回false,也就说这个方法无论如何都会立即返回。在拿不到锁时不会一直在那等待。
tryLock(long time, TimeUnit unit)方法和tryLock()方法是类似的,只不过区别在于这个方法在拿不到锁时会等待一定的时间,在时间期限之内如果还拿不到锁,就返回false。如果如果一开始拿到锁或者在等待期间内拿到了锁,则返回true。
所以,一般情况下通过tryLock来获取锁时是这样使用的:
1
2
3
4
5
6
7
8
9
10
11
12
|
Lock lock = ...; if (lock.tryLock()) {
try {
//处理任务
} catch (Exception ex){
} finally {
lock.unlock(); //释放锁
}
} else {
//如果不能获取锁,则直接做其他事情
} |
lockInterruptibly()方法比较特殊,当通过这个方法去获取锁时,如果线程正在等待获取锁,则这个线程能够响应中断,即中断线程的等待状态。也就使说,当两个线程同时通过lock.lockInterruptibly()想获取某个锁时,假若此时线程A获取到了锁,而线程B只有在等待,那么对线程B调用threadB.interrupt()方法能够中断线程B的等待过程。
由于lockInterruptibly()的声明中抛出了异常,所以lock.lockInterruptibly()必须放在try块中或者在调用lockInterruptibly()的方法外声明抛出InterruptedException。
因此lockInterruptibly()一般的使用形式如下:
1
2
3
4
5
6
7
8
9
|
public void method() throws InterruptedException {
lock.lockInterruptibly();
try {
//.....
}
finally {
lock.unlock();
}
} |
注意,当一个线程获取了锁之后,是不会被interrupt()方法中断的。因为本身在前面的文章中讲过单独调用interrupt()方法不能中断正在运行过程中的线程,只能中断阻塞过程中的线程。
因此当通过lockInterruptibly()方法获取某个锁时,如果不能获取到,只有进行等待的情况下,是可以响应中断的。
而用synchronized修饰的话,当一个线程处于等待某个锁的状态,是无法被中断的,只有一直等待下去。
2.ReentrantLock
ReentrantLock,意思是“可重入锁”,关于可重入锁的概念在下一节讲述。ReentrantLock是唯一实现了Lock接口的类,并且ReentrantLock提供了更多的方法。下面通过一些实例看具体看一下如何使用ReentrantLock。
例子1,lock()的正确使用方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
public class Test {
private ArrayList<Integer> arrayList = new ArrayList<Integer>();
public static void main(String[] args) {
final Test test = new Test();
new Thread(){
public void run() {
test.insert(Thread.currentThread());
};
}.start();
new Thread(){
public void run() {
test.insert(Thread.currentThread());
};
}.start();
}
public void insert(Thread thread) {
Lock lock = new ReentrantLock(); //注意这个地方
lock.lock();
try {
System.out.println(thread.getName()+ "得到了锁" );
for ( int i= 0 ;i< 5 ;i++) {
arrayList.add(i);
}
} catch (Exception e) {
// TODO: handle exception
} finally {
System.out.println(thread.getName()+ "释放了锁" );
lock.unlock();
}
}
} |
各位朋友先想一下这段代码的输出结果是什么?
Thread-0得到了锁 Thread-1得到了锁 Thread-0释放了锁 Thread-1释放了锁
也许有朋友会问,怎么会输出这个结果?第二个线程怎么会在第一个线程释放锁之前得到了锁?原因在于,在insert方法中的lock变量是局部变量,每个线程执行该方法时都会保存一个副本,那么理所当然每个线程执行到lock.lock()处获取的是不同的锁,所以就不会发生冲突。
知道了原因改起来就比较容易了,只需要将lock声明为类的属性即可。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
public class Test {
private ArrayList<Integer> arrayList = new ArrayList<Integer>();
private Lock lock = new ReentrantLock(); //注意这个地方
public static void main(String[] args) {
final Test test = new Test();
new Thread(){
public void run() {
test.insert(Thread.currentThread());
};
}.start();
new Thread(){
public void run() {
test.insert(Thread.currentThread());
};
}.start();
}
public void insert(Thread thread) {
lock.lock();
try {
System.out.println(thread.getName()+ "得到了锁" );
for ( int i= 0 ;i< 5 ;i++) {
arrayList.add(i);
}
} catch (Exception e) {
// TODO: handle exception
} finally {
System.out.println(thread.getName()+ "释放了锁" );
lock.unlock();
}
}
} |
这样就是正确地使用Lock的方法了。
例子2,tryLock()的使用方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
public class Test {
private ArrayList<Integer> arrayList = new ArrayList<Integer>();
private Lock lock = new ReentrantLock(); //注意这个地方
public static void main(String[] args) {
final Test test = new Test();
new Thread(){
public void run() {
test.insert(Thread.currentThread());
};
}.start();
new Thread(){
public void run() {
test.insert(Thread.currentThread());
};
}.start();
}
public void insert(Thread thread) {
if (lock.tryLock()) {
try {
System.out.println(thread.getName()+ "得到了锁" );
for ( int i= 0 ;i< 5 ;i++) {
arrayList.add(i);
}
} catch (Exception e) {
// TODO: handle exception
} finally {
System.out.println(thread.getName()+ "释放了锁" );
lock.unlock();
}
} else {
System.out.println(thread.getName()+ "获取锁失败" );
}
}
} |
输出结果:
Thread-0得到了锁 Thread-1获取锁失败 Thread-0释放了锁
例子3,lockInterruptibly()响应中断的使用方法:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
|
public class Test {
private Lock lock = new ReentrantLock();
public static void main(String[] args) {
Test test = new Test();
MyThread thread1 = new MyThread(test);
MyThread thread2 = new MyThread(test);
thread1.start();
thread2.start();
try {
Thread.sleep( 2000 );
} catch (InterruptedException e) {
e.printStackTrace();
}
thread2.interrupt();
}
public void insert(Thread thread) throws InterruptedException{
lock.lockInterruptibly(); //注意,如果需要正确中断等待锁的线程,必须将获取锁放在外面,然后将InterruptedException抛出
try {
System.out.println(thread.getName()+ "得到了锁" );
long startTime = System.currentTimeMillis();
for ( ; ;) {
if (System.currentTimeMillis() - startTime >= Integer.MAX_VALUE)
break ;
//插入数据
}
}
finally {
System.out.println(Thread.currentThread().getName()+ "执行finally" );
lock.unlock();
System.out.println(thread.getName()+ "释放了锁" );
}
}
} class MyThread extends Thread {
private Test test = null ;
public MyThread(Test test) {
this .test = test;
}
@Override
public void run() {
try {
test.insert(Thread.currentThread());
} catch (InterruptedException e) {
System.out.println(Thread.currentThread().getName()+ "被中断" );
}
}
} |
运行之后,发现thread2能够被正确中断。
3.ReadWriteLock
ReadWriteLock也是一个接口,在它里面只定义了两个方法:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
public interface ReadWriteLock {
/**
* Returns the lock used for reading.
*
* @return the lock used for reading.
*/
Lock readLock();
/**
* Returns the lock used for writing.
*
* @return the lock used for writing.
*/
Lock writeLock();
} |
一个用来获取读锁,一个用来获取写锁。也就是说将文件的读写操作分开,分成2个锁来分配给线程,从而使得多个线程可以同时进行读操作。下面的ReentrantReadWriteLock实现了ReadWriteLock接口。
4.ReentrantReadWriteLock
ReentrantReadWriteLock里面提供了很多丰富的方法,不过最主要的有两个方法:readLock()和writeLock()用来获取读锁和写锁。
下面通过几个例子来看一下ReentrantReadWriteLock具体用法。
假如有多个线程要同时进行读操作的话,先看一下synchronized达到的效果:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
public class Test {
private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
public static void main(String[] args) {
final Test test = new Test();
new Thread(){
public void run() {
test.get(Thread.currentThread());
};
}.start();
new Thread(){
public void run() {
test.get(Thread.currentThread());
};
}.start();
}
public synchronized void get(Thread thread) {
long start = System.currentTimeMillis();
while (System.currentTimeMillis() - start <= 1 ) {
System.out.println(thread.getName()+ "正在进行读操作" );
}
System.out.println(thread.getName()+ "读操作完毕" );
}
} |
这段程序的输出结果会是,直到thread1执行完读操作之后,才会打印thread2执行读操作的信息。
Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0正在进行读操作 Thread-0读操作完毕 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1正在进行读操作 Thread-1读操作完毕
而改成用读写锁的话:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
public class Test {
private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
public static void main(String[] args) {
final Test test = new Test();
new Thread(){
public void run() {
test.get(Thread.currentThread());
};
}.start();
new Thread(){
public void run() {
test.get(Thread.currentThread());
};
}.start();
}
public void get(Thread thread) {
rwl.readLock().lock();
try {
long start = System.currentTimeMillis();
while (System.currentTimeMillis() - start <= 1 ) {
System.out.println(thread.getName()+ "正在进行读操作" );
}
System.out.println(thread.getName()+ "读操作完毕" );
} finally {
rwl.readLock().unlock();
}
}
} |
此时打印的结果为:
说明thread1和thread2在同时进行读操作。
这样就大大提升了读操作的效率。
不过要注意的是,如果有一个线程已经占用了读锁,则此时其他线程如果要申请写锁,则申请写锁的线程会一直等待释放读锁。
如果有一个线程已经占用了写锁,则此时其他线程如果申请写锁或者读锁,则申请的线程会一直等待释放写锁。
关于ReentrantReadWriteLock类中的其他方法感兴趣的朋友可以自行查阅API文档。
5.Lock和synchronized的选择
总结来说,Lock和synchronized有以下几点不同:
1)Lock是一个接口,而synchronized是Java中的关键字,synchronized是内置的语言实现;
2)synchronized在发生异常时,会自动释放线程占有的锁,因此不会导致死锁现象发生;而Lock在发生异常时,如果没有主动通过unLock()去释放锁,则很可能造成死锁现象,因此使用Lock时需要在finally块中释放锁;
3)Lock可以让等待锁的线程响应中断,而synchronized却不行,使用synchronized时,等待的线程会一直等待下去,不能够响应中断;
4)通过Lock可以知道有没有成功获取锁,而synchronized却无法办到。
5)Lock可以提高多个线程进行读操作的效率。
在性能上来说,如果竞争资源不激烈,两者的性能是差不多的,而当竞争资源非常激烈时(即有大量线程同时竞争),此时Lock的性能要远远优于synchronized。所以说,在具体使用时要根据适当情况选择。
三.锁的相关概念介绍
在前面介绍了Lock的基本使用,这一节来介绍一下与锁相关的几个概念。
1.可重入锁
如果锁具备可重入性,则称作为可重入锁。像synchronized和ReentrantLock都是可重入锁,可重入性在我看来实际上表明了锁的分配机制:基于线程的分配,而不是基于方法调用的分配。举个简单的例子,当一个线程执行到某个synchronized方法时,比如说method1,而在method1中会调用另外一个synchronized方法method2,此时线程不必重新去申请锁,而是可以直接执行方法method2。
看下面这段代码就明白了:
1
2
3
4
5
6
7
8
9
|
class MyClass {
public synchronized void method1() {
method2();
}
public synchronized void method2() {
}
} |
上述代码中的两个方法method1和method2都用synchronized修饰了,假如某一时刻,线程A执行到了method1,此时线程A获取了这个对象的锁,而由于method2也是synchronized方法,假如synchronized不具备可重入性,此时线程A需要重新申请锁。但是这就会造成一个问题,因为线程A已经持有了该对象的锁,而又在申请获取该对象的锁,这样就会线程A一直等待永远不会获取到的锁。
而由于synchronized和Lock都具备可重入性,所以不会发生上述现象。
2.可中断锁
可中断锁:顾名思义,就是可以相应中断的锁。
在Java中,synchronized就不是可中断锁,而Lock是可中断锁。
如果某一线程A正在执行锁中的代码,另一线程B正在等待获取该锁,可能由于等待时间过长,线程B不想等待了,想先处理其他事情,我们可以让它中断自己或者在别的线程中中断它,这种就是可中断锁。
在前面演示lockInterruptibly()的用法时已经体现了Lock的可中断性。
3.公平锁
公平锁即尽量以请求锁的顺序来获取锁。比如同是有多个线程在等待一个锁,当这个锁被释放时,等待时间最久的线程(最先请求的线程)会获得该所,这种就是公平锁。
非公平锁即无法保证锁的获取是按照请求锁的顺序进行的。这样就可能导致某个或者一些线程永远获取不到锁。
在Java中,synchronized就是非公平锁,它无法保证等待的线程获取锁的顺序。
而对于ReentrantLock和ReentrantReadWriteLock,它默认情况下是非公平锁,但是可以设置为公平锁。
看一下这2个类的源代码就清楚了:
在ReentrantLock中定义了2个静态内部类,一个是NotFairSync,一个是FairSync,分别用来实现非公平锁和公平锁。
我们可以在创建ReentrantLock对象时,通过以下方式来设置锁的公平性:
1
|
ReentrantLock lock = new ReentrantLock( true );
|
如果参数为true表示为公平锁,为fasle为非公平锁。默认情况下,如果使用无参构造器,则是非公平锁。
另外在ReentrantLock类中定义了很多方法,比如:
isFair() //判断锁是否是公平锁
isLocked() //判断锁是否被任何线程获取了
isHeldByCurrentThread() //判断锁是否被当前线程获取了
hasQueuedThreads() //判断是否有线程在等待该锁
在ReentrantReadWriteLock中也有类似的方法,同样也可以设置为公平锁和非公平锁。不过要记住,ReentrantReadWriteLock并未实现Lock接口,它实现的是ReadWriteLock接口。
4.读写锁
读写锁将对一个资源(比如文件)的访问分成了2个锁,一个读锁和一个写锁。
正因为有了读写锁,才使得多个线程之间的读操作不会发生冲突。
ReadWriteLock就是读写锁,它是一个接口,ReentrantReadWriteLock实现了这个接口。
可以通过readLock()获取读锁,通过writeLock()获取写锁。
上面已经演示过了读写锁的使用方法,在此不再赘述。
应用例子:
lock排他锁的应用
package thread; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public class LockTest { public static void main(String[] args) { ExecutorService threadPool = Executors.newFixedThreadPool(5); threadPool.execute(new Runnable() { @Override public void run() { while(true) { try { Thread.sleep(200); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } printInfo("zhangxiaoxiang"); } } }); threadPool.execute(new Runnable() { @Override public void run() { while(true) { try { Thread.sleep(200); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } printInfo("lihuoming"); } } }); threadPool.shutdown(); } static Lock lock = new ReentrantLock();//得到一个线程锁对象 static void printInfo(String str) { lock.lock();//加锁 try { char[] c = str.toCharArray(); for(int i = 0; i<c.length;i++) { System.out.print(c[i]); } System.out.println(); } catch (Exception e) { e.printStackTrace(); }finally { lock.unlock();//解锁 } } }
打印效果得到同步,字符之间没有混乱。
ReadWriteLock读写锁的应用
package thread; import java.util.Random; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReadWriteLock; import java.util.concurrent.locks.ReentrantLock; import java.util.concurrent.locks.ReentrantReadWriteLock; public class ReadWriteLockTest { private static String str = "";//保存线程全局变量 public static void main(String[] args) { ExecutorService threadPool = Executors.newFixedThreadPool(10); for(int i = 0;i<5;i++) {//5个读的任务 threadPool.execute(new Runnable() { @Override public void run() { while(true) { try { Thread.sleep(200); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } printInfo(str); } } }); } //------------------------------------------------------------------------------------------------ for(int i = 0;i<2;i++) {//2个写的任务 threadPool.execute(new Runnable() { @Override public void run() { while(true) { try { Thread.sleep(200); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } setInfo(new Random().nextInt(1000)+""); } } }); } threadPool.shutdown(); } static ReadWriteLock lock = new ReentrantReadWriteLock();//得到读写线程锁对象 static void printInfo(String str) { lock.readLock().lock();//读锁,读锁被占用其他线程也可以占用读锁,但是占用写锁必须等待 try { System.out.println(Thread.currentThread().getName()+"开始读!"); char[] c = str.toCharArray(); for(int i = 0; i<c.length;i++) { System.out.print(c[i]); } System.out.println(); System.out.println(Thread.currentThread().getName()+"结束读!"); } catch (Exception e) { e.printStackTrace(); }finally { lock.readLock().unlock(); } } static void setInfo(String str) { lock.writeLock().lock();//写锁,写锁被占用其他线程无论是读锁还是写锁必须等待 try { System.out.println(Thread.currentThread().getName()+"开始写!"); ReadWriteLockTest.str = str; System.out.println(Thread.currentThread().getName()+"结束写 !"); } catch (Exception e) { e.printStackTrace(); }finally { lock.writeLock().unlock(); } } }
写线程丝毫没有收到读线程的干扰。并且每次都是读线程结束之后,写线程才开始的
相关推荐
在Java中,有两种主要的锁机制:synchronized和Lock。它们都是用来实现线程同步,防止数据竞争,确保并发环境下的数据一致性。 首先,synchronized是Java的关键字,由JVM直接支持,其底层实现依赖于操作系统原语,...
根据提供的信息,《java编程详解》是一本被广泛推荐并深受读者喜爱的专业书籍,它旨在为初学者和进阶学习者提供全面、深入的Java编程知识。以下是对该书可能涵盖的一些核心知识点的概述: ### Java语言基础 1. **...
Java提供了多种同步机制,如`synchronized`关键字、`wait()`、`notify()`和`notifyAll()`方法,以及`Lock`接口(如`ReentrantLock`)等。通过这些机制,可以控制线程的执行顺序,确保数据的一致性和正确性。 线程组...
Java Lock接口是Java并发编程中一个重要的组成部分,它提供了一种更为灵活的锁机制,相比传统的`synchronized`关键字,Lock接口允许我们进行更细粒度的控制,包括可中断的锁等待、尝试获取锁以及定时等待等。...
《Lock详解——深入理解Java并发编程的基石》 在Java并发编程中,Lock接口及其实现是不可或缺的一部分。本文将深入探讨Lock接口的核心实现——ReentrantLock,以及它背后的抽象队列同步器...
在Java 1.5版本后,引入了`java.util.concurrent.locks`包,其中的`Lock`接口作为同步机制的新选择,弥补了`synchronized`关键字的一些局限性。下面将详细解释`Lock`接口以及与`synchronized`的区别。 `Lock`接口是...
- 线程同步机制包括synchronized关键字、wait()、notify()和notifyAll()方法,以及Lock接口和相关的实现类。 11. **反射**: - 反射允许在运行时检查类的信息,如类名、属性和方法,并动态调用方法或访问属性。 ...
【Java程序详解】 Java是一种广泛使用的面向对象的编程语言,由Sun Microsystems(后被Oracle公司收购)于1995年推出。它的设计目标是具有跨平台性、可移植性、安全性和高效性,使得开发者可以编写一次代码,到处...
以下是对Java面试考试的一些详解,包括常见知识点和个人对照书的学习建议。 1. **基础语法**:面试通常会从Java的基础知识开始,如变量类型、运算符、流程控制(if、switch、for、while)、数组和集合(ArrayList、...
Java编程详解是一个全面涵盖Java语言基础与面向对象高级编程的教程,主要针对想要深入学习Java技术的初学者和进阶者。本教程以PPT的形式呈现,使得学习过程更为直观和易于理解。以下是对该教程内容的详细阐述: 1. ...
Object lock = new Object(); MyThread thread1 = new MyThread(lock); MyThread thread2 = new MyThread(lock); thread1.start(); thread2.start(); } } 3. 多线程中的死锁与活锁 在多线程环境下,死锁是指两...
`ReentrantLock`是Java并发编程中的一种高级锁机制,它是`java.util.concurrent.locks`包中的类,提供了比`synchronized`关键字更丰富的功能和更细粒度的控制。相较于`synchronized`,`ReentrantLock`的主要优势在于...
"Java 中 Locks 的使用详解" 在 Java 中,Locks 是一种非常重要的同步机制,它提供了更加灵活的同步控制。在 Java 5 中,Locks 被引入,以提供更加灵活的同步控制。与 Synchronized Block 相比,Locks 提供了更加...
《深入Synchronized与java.util.concurrent.locks.Lock的区别详解》 Synchronized和java.util.concurrent.locks.Lock都是Java中用于实现线程同步的关键字和接口,它们的主要目标是保证多线程环境下的数据一致性与...
Java编程详解,作为一门针对初学者与进阶者的学习资源,涵盖了广泛的Java语言知识点。这本书籍,名为"Java 2编程详解Special Edition Using Java2",旨在帮助读者深入理解和掌握Java编程的核心概念和技术。 首先,...
【Java AQS详解】 AbstractQueuedSynchronizer (AQS) 是 Java 并发库中的一个核心组件,它是实现高效并发控制的基础。AQS 提供了一种基于队列的线程同步机制,允许开发者构建自定义的锁和同步器。在Java并发编程中...
2. **并发问题**:Java提供了强大的并发支持,但并发编程中可能出现死锁、活锁、饥饿等问题,需要深入理解线程同步机制,如synchronized、Lock等。 3. **空指针异常**:NullPointerException是Java中常见的运行时...
### Java多线程详解:深度探索Java线程机制 #### 知识点一:线程与进程的区别 在深入探讨Java多线程之前,我们首先需要理解线程与进程的基本概念及其区别。进程是资源分配的基本单位,拥有独立的内存空间,而线程...