客户端查询样例:
is_valid:1+AND+entity_id:00323530+AND+((goods_type:1+AND+self_entity_ids:00323531)+OR+(goods_type:2+AND+self_entity_id:00323531))+AND+_query_:{!fieldboost+f%3Dstock_create_times}00323531
QP fieldboost实现:
com.dfire.tis.solrextend.queryparse.s4supplyGoods.FieldBoostByPayloadQParserPlugin
AllWarehouseFunctionQuery
solrconfig.xml配置:
<queryParser name="fieldboost" class="com.dfire.tis.solrextend.queryparse.s4supplyGoods.FieldBoostByPayloadQParserPlugin" />
相关推荐
除了基础查询,Lucene还支持更复杂的表达式,例如使用FunctionQuery进行基于文档属性的排序,或者使用CustomScoreQuery自定义评分规则。这些特性使得Lucene可以处理复杂的查询场景,比如根据用户评分、发布日期等...
通过这种方式,我们可以根据实际业务场景优化搜索结果的排序,比如提高最新或最热门文档的得分,或者基于用户行为数据调整评分策略。自定义评分组件是Solr灵活性的重要体现,也是提升搜索质量的关键工具。在实践中,...
在当今数字化浪潮中,园区智慧化建设正成为推动区域经济发展和产业转型升级的关键力量。这份园区智慧化解决方案全面展示了如何通过集成大数据、云计算、物联网(IoT)、人工智能(AI)、地理信息系统(GIS)和建筑信息模型(BIM)等前沿技术,为传统产业园区插上数字的翅膀,打造“数字创新”产业园区。 数字技术赋能,重塑园区生态 传统产业园区往往面临运营效率低下、管理粗放、资源利用率不高等问题。而通过智慧化改造,园区可以实现从“清水房”到“精装房”的华丽蜕变。数字化技术不仅提升了园区的运营管理水平,降低了运营成本,还显著增强了园区的竞争力和吸引力。例如,通过构建园区数字模型(CIM),实现了多规数据融合,形成了园区规划“一张图”,为园区管理提供了直观、高效的可视化工具。此外,智能感知设施的应用,如环境监测、能耗监测等,让园区管理更加精细化、科学化。智慧能源管理系统通过实时监测和智能分析,帮助园区实现低碳绿色发展,而综合安防管控系统则通过AI+视频融合技术,为园区安全保驾护航。更有趣的是,这些技术的应用还让园区服务变得更加个性化和便捷,比如园区移动APP,让企业和员工可以随时随地享受园区服务,从会议室预定到智慧公寓管理,一切尽在“掌”握。 智慧运营中心,打造园区大脑 园区智慧化建设的核心在于构建智慧运营中心,这可以看作是园区的“数字大脑”。通过集成物联网服务平台、大数据分析平台、应用开发赋能平台等核心支撑平台,智慧运营中心实现了对园区内各类数据的实时采集、处理和分析。在这个“大脑”的指挥下,园区管理变得更加高效、协同。比如,建设工程项目智慧监管系统,通过基于二三维GIS底图的统一数字化监管,实现了对园区在建工程项目的进度控制、质量控制和安全控制的全方位监管。可视化招商系统则利用CIM模型,以多种方式为园区对外招商推介提供了数字化、在线化的展示窗口。而产业经济分析系统,则通过挖掘和分析产业数据,为园区产业发展提供了有力的决策支持。智慧运营中心的建设,不仅提升了园区的整体运营水平,还为园区的可持续发展奠定了坚实基础。 产业服务升级,激发创新活力 园区智慧化建设不仅关注基础设施和运营管理的升级,更重视产业服务的创新。通过整合平台资源、园区本地资源和外围资源,打造园区服务资源池,为园区内的企业和个人提供了全面的智慧管理、智慧工作和智慧生活服务。特别是工业互联网平台和工业云服务的建设,为园区内的企业提供了轻量化、智能化的生产服务。这些服务涵盖了车间信息化管理、云制造执行、云智能仓储、设备健康管理等多个方面,有效提升了企业的生产效率和竞争力。此外,通过产业经济分析系统,园区还能够对潜在客户进行挖掘、对经销商进行风控、对产品销量进行预测等,为企业的市场营销提供了有力支持。这些创新的产业服务,不仅激发了园区的创新活力,还为区域经济的转型升级注入了新的动力。总之,园区智慧化建设是一场深刻的变革,它正以前所未有的方式重塑着园区的生态、运营和服务模式,为园区的可持续发展开辟了广阔的前景。
芋道 yudao ruoyi-vue-pro bmp sql , 更新时间 2025-01-24 ,对应yudao版本2.4.1
python、yolo、pytorch
JavaScript项目代码-家庭聚会神器-打牌计分微信小程序
人工智能、大语言模型相关学习资料
1、文件内容:svrcore-devel-4.1.3-2.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/svrcore-devel-4.1.3-2.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊
人工智能、大语言模型相关学习资料
python、yolo、pytorch
人工智能、大语言模型相关学习资料
python、yolo、pytorch
图像处理项目实战
人工智能、大语言模型相关学习资料
python、yolo、pytorch
python、yolo、pytorch
车牌识别项目
人工智能、大语言模型相关学习资料
python、yolo、pytorch
系统选用B/S模式,后端应用springboot框架,前端应用vue框架, MySQL为后台数据库。 本系统基于java设计的各项功能,数据库服务器端采用了Mysql作为后台数据库,使Web与数据库紧密联系起来。 在设计过程中,充分保证了系统代码的良好可读性、实用性、易扩展性、通用性、便于后期维护、操作方便以及页面简洁等特点。