原创地址:https://www.cnblogs.com/yjiyjige/p/3263858.html
KMP算法应该是每一本《数据结构》书都会讲的,算是知名度最高的算法之一了,但很可惜,我大二那年压根就没看懂过~~~
之后也在很多地方也都经常看到讲解KMP算法的文章,看久了好像也知道是怎么一回事,但总感觉有些地方自己还是没有完全懂明白。这两天花了点时间总结一下,有点小体会,我希望可以通过我自己的语言来把这个算法的一些细节梳理清楚,也算是考验一下自己有真正理解这个算法。
什么是KMP算法:
KMP是三位大牛:D.E.Knuth、J.H.Morris和V.R.Pratt同时发现的。其中第一位就是《计算机程序设计艺术》的作者!!
KMP算法要解决的问题就是在字符串(也叫主串)中的模式(pattern)定位问题。说简单点就是我们平时常说的关键字搜索。模式串就是关键字(接下来称它为P),如果它在一个主串(接下来称为T)中出现,就返回它的具体位置,否则返回-1(常用手段)。
首先,对于这个问题有一个很单纯的想法:从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位。这有什么难的?
我们可以这样初始化:
之后我们只需要比较i指针指向的字符和j指针指向的字符是否一致。如果一致就都向后移动,如果不一致,如下图:
A和E不相等,那就把i指针移回第1位(假设下标从0开始),j移动到模式串的第0位,然后又重新开始这个步骤:
基于这个想法我们可以得到以下的程序:
1 /** 2 3 * 暴力破解法 4 5 * @param ts 主串 6 7 * @param ps 模式串 8 9 * @return 如果找到,返回在主串中第一个字符出现的下标,否则为-1 10 11 */ 12 13 public static int bf(String ts, String ps) { 14 15 char[] t = ts.toCharArray(); 16 17 char[] p = ps.toCharArray(); 18 19 int i = 0; // 主串的位置 20 21 int j = 0; // 模式串的位置 22 23 while (i < t.length && j < p.length) { 24 25 if (t[i] == p[j]) { // 当两个字符相同,就比较下一个 26 27 i++; 28 29 j++; 30 31 } else { 32 33 i = i - j + 1; // 一旦不匹配,i后退 34 35 j = 0; // j归0 36 37 } 38 39 } 40 41 if (j == p.length) { 42 43 return i - j; 44 45 } else { 46 47 return -1; 48 49 } 50 51 }
上面的程序是没有问题的,但不够好!(想起我高中时候数字老师的一句话:我不能说你错,只能说你不对~~~)
如果是人为来寻找的话,肯定不会再把i移动回第1位,因为主串匹配失败的位置前面除了第一个A之外再也没有A了,我们为什么能知道主串前面只有一个A?因为我们已经知道前面三个字符都是匹配的!(这很重要)。移动过去肯定也是不匹配的!有一个想法,i可以不动,我们只需要移动j即可,如下图:
上面的这种情况还是比较理想的情况,我们最多也就多比较了再次。但假如是在主串“SSSSSSSSSSSSSA”中查找“SSSSB”,比较到最后一个才知道不匹配,然后i回溯,这个的效率是显然是最低的。
大牛们是无法忍受“暴力破解”这种低效的手段的,于是他们三个研究出了KMP算法。其思想就如同我们上边所看到的一样:“利用已经部分匹配这个有效信息,保持i指针不回溯,通过修改j指针,让模式串尽量地移动到有效的位置。”
所以,整个KMP的重点就在于当某一个字符与主串不匹配时,我们应该知道j指针要移动到哪?
接下来我们自己来发现j的移动规律:
如图:C和D不匹配了,我们要把j移动到哪?显然是第1位。为什么?因为前面有一个A相同啊:
如下图也是一样的情况:
可以把j指针移动到第2位,因为前面有两个字母是一样的:
至此我们可以大概看出一点端倪,当匹配失败时,j要移动的下一个位置k。存在着这样的性质:最前面的k个字符和j之前的最后k个字符是一样的。
如果用数学公式来表示是这样的
P[0 ~ k-1] == P[j-k ~ j-1]
这个相当重要,如果觉得不好记的话,可以通过下图来理解:
弄明白了这个就应该可能明白为什么可以直接将j移动到k位置了。
因为:
当T[i] != P[j]时
有T[i-j ~ i-1] == P[0 ~ j-1]
由P[0 ~ k-1] == P[j-k ~ j-1]
必然:T[i-k ~ i-1] == P[0 ~ k-1]
公式很无聊,能看明白就行了,不需要记住。
这一段只是为了证明我们为什么可以直接将j移动到k而无须再比较前面的k个字符。
好,接下来就是重点了,怎么求这个(这些)k呢?因为在P的每一个位置都可能发生不匹配,也就是说我们要计算每一个位置j对应的k,所以用一个数组next来保存,next[j] = k,表示当T[i] != P[j]时,j指针的下一个位置。
很多教材或博文在这个地方都是讲得比较含糊或是根本就一笔带过,甚至就是贴一段代码上来,为什么是这样求?怎么可以这样求?根本就没有说清楚。而这里恰恰是整个算法最关键的地方。
1 public static int[] getNext(String ps) { 2 3 char[] p = ps.toCharArray(); 4 5 int[] next = new int[p.length]; 6 7 next[0] = -1; 8 9 int j = 0; 10 11 int k = -1; 12 13 while (j < p.length - 1) { 14 15 if (k == -1 || p[j] == p[k]) { 16 17 next[++j] = ++k; 18 19 } else { 20 21 k = next[k]; 22 23 } 24 25 } 26 27 return next; 28 29 }
这个版本的求next数组的算法应该是流传最广泛的,代码是很简洁。可是真的很让人摸不到头脑,它这样计算的依据到底是什么?
好,先把这个放一边,我们自己来推导思路,现在要始终记住一点,next[j]的值(也就是k)表示,当P[j] != T[i]时,j指针的下一步移动位置。
先来看第一个:当j为0时,如果这时候不匹配,怎么办?
像上图这种情况,j已经在最左边了,不可能再移动了,这时候要应该是i指针后移。所以在代码中才会有next[0] = -1;这个初始化。
如果是当j为1的时候呢?
显然,j指针一定是后移到0位置的。因为它前面也就只有这一个位置了~~~
下面这个是最重要的,请看如下图:
请仔细对比这两个图。
我们发现一个规律:
当P[k] == P[j]时,
有next[j+1] == next[j] + 1
其实这个是可以证明的:
因为在P[j]之前已经有P[0 ~ k-1] == p[j-k ~ j-1]。(next[j] == k)
这时候现有P[k] == P[j],我们是不是可以得到P[0 ~ k-1] + P[k] == p[j-k ~ j-1] + P[j]。
即:P[0 ~ k] == P[j-k ~ j],即next[j+1] == k + 1 == next[j] + 1。
这里的公式不是很好懂,还是看图会容易理解些。
那如果P[k] != P[j]呢?比如下图所示:
像这种情况,如果你从代码上看应该是这一句:k = next[k];为什么是这样子?你看下面应该就明白了。
现在你应该知道为什么要k = next[k]了吧!像上边的例子,我们已经不可能找到[ A,B,A,B ]这个最长的后缀串了,但我们还是可能找到[ A,B ]、[ B ]这样的前缀串的。所以这个过程像不像在定位[ A,B,A,C ]这个串,当C和主串不一样了(也就是k位置不一样了),那当然是把指针移动到next[k]啦。
有了next数组之后就一切好办了,我们可以动手写KMP算法了:
1 public static int KMP(String ts, String ps) { 2 3 char[] t = ts.toCharArray(); 4 5 char[] p = ps.toCharArray(); 6 7 int i = 0; // 主串的位置 8 9 int j = 0; // 模式串的位置 10 11 int[] next = getNext(ps); 12 13 while (i < t.length && j < p.length) { 14 15 if (j == -1 || t[i] == p[j]) { // 当j为-1时,要移动的是i,当然j也要归0 16 17 i++; 18 19 j++; 20 21 } else { 22 23 // i不需要回溯了 24 25 // i = i - j + 1; 26 27 j = next[j]; // j回到指定位置 28 29 } 30 31 } 32 33 if (j == p.length) { 34 35 return i - j; 36 37 } else { 38 39 return -1; 40 41 } 42 43 }
和暴力破解相比,就改动了4个地方。其中最主要的一点就是,i不需要回溯了。
最后,来看一下上边的算法存在的缺陷。来看第一个例子:
显然,当我们上边的算法得到的next数组应该是[ -1,0,0,1 ]
所以下一步我们应该是把j移动到第1个元素咯:
不难发现,这一步是完全没有意义的。因为后面的B已经不匹配了,那前面的B也一定是不匹配的,同样的情况其实还发生在第2个元素A上。
显然,发生问题的原因在于P[j] == P[next[j]]。
所以我们也只需要添加一个判断条件即可:
public static int[] getNext(String ps) { char[] p = ps.toCharArray(); int[] next = new int[p.length]; next[0] = -1; int j = 0; int k = -1; while (j < p.length - 1) { if (k == -1 || p[j] == p[k]) { if (p[++j] == p[++k]) { // 当两个字符相等时要跳过 next[j] = next[k]; } else { next[j] = k; } } else { k = next[k]; } } return next; }
好了,至此。KMP算法也结束了。
很奇怪,好像不是很难的东西怎么就把我困住这么久呢?
仔细想想还是因为自己太浮躁了,以前总是草草应付,很多细节都没弄清楚,就以为自己懂了。结果就只能是似懂非懂的。要学东西真的需要静下心来。
相关推荐
KMP算法详解 KMP算法详解 KMP算法详解
KMP 算法详解 KMP 算法是字符串模式匹配的一种高效算法,解决了字符串中模式匹配的问题。该算法可以在 O(m+n) 的时间复杂度内完成字符串模式匹配。 简单匹配算法 简单匹配算法的思想是直截了当的,将主串 S 中...
KMP算法,全称是Knuth-Morris-Pratt字符串搜索算法,是一种高效的字符串匹配算法,由Donald Knuth、Vaughan Pratt和James H. Morris三人于1977年共同发表。KMP算法的关键在于当出现不匹配时,它能够利用已经得到的...
### KMP算法详解 #### 一、KMP算法概述 KMP算法,全称为Knuth-Morris-Pratt算法,是一种高效的字符串匹配算法,由Donald Knuth、James H. Morris和Vaughan Pratt三位计算机科学家共同提出。该算法主要用于解决在主...
**KMP算法详解** KMP(Knuth-Morris-Pratt)算法是一种高效解决字符串匹配问题的算法,尤其适用于在长文本中查找特定模式串。KMP算法避免了不必要的字符回溯,通过预处理模式串生成一个部分匹配表,使得在主串与...
"kmp算法详解" KMP 字符串模式匹配算法是高效的字符串匹配算法,时间复杂度为 O(m+n),其中 m 和 n 分别是主串和模式串的长度。KMP 算法的核心思想是利用已经得到的部分匹配信息来进行后面的匹配过程。 KMP 算法的...
KMP 算法实例详解 KMP 算法是一种高效的字符串匹配算法,由 Knuth、Morris 和 Pratt 三位科学家共同提出。该算法的主要思想是通过预处理模式字符串,生成一个 next 数组,以便在匹配过程中快速跳过不匹配的部分,...
4. **`Index_KMP`函数详解**:这个函数实现了KMP算法的匹配过程。它使用两个指针`i`和`j`分别指向主串和模式串的当前位置。当模式串的当前位置等于0或者当前字符相同时,指针向前移动;当不相同时,则根据`next`数组...
### KMP算法详解 #### 简介 KMP算法,全称为Knuth-Morris-Pratt算法,是一种高效的字符串模式匹配算法。相比于简单的模式匹配算法,KMP算法能够显著提高搜索速度,尤其是在处理大规模文本数据时优势明显。本文将...
#### KMP算法步骤详解 1. **预处理模式串**:首先,计算模式串的`next`数组,这一步是KMP算法的关键。通过遍历模式串,可以构建出`next`数组,记录模式串的每个前缀的最大真前缀长度。 2. **匹配过程**:从主串的...
kmp算法----KMP算法是D.E.Knuth、J.H.Morris和V.R.Pratt共同提出的,简称KMP算法。该算法较BF算法有较大改进,主要是消除了主串指针的回溯,从而使算法效率有了某种程度的提高。
本文介绍了KMP算法的原理和基本实现方法,附带算法模板的代码和详解。如想了解更多内容,欢迎关注微信公众号:信息学竞赛从入门到巅峰。
《KMP算法详解——高效字符串匹配的秘密》 在信息技术领域,字符串处理是极其常见的操作,尤其是在文本分析、数据挖掘和模式识别中。其中,字符串匹配是核心问题之一,而KMP(Knuth-Morris-Pratt)算法正是解决这一...
严蔚敏-数据结构-kmp算法详解.ppt该文档详细且完整,值得借鉴下载使用,欢迎下载使用,有问题可以第一时间联系作者~
严蔚敏数据结构kmp算法详解PPT学习教案.pptx 本资源摘要信息将对严蔚敏数据结构kmp算法的学习教案进行详细的讲解和分析。KMP算法是字符串匹配算法中的一种重要算法,它可以高效地进行字符串匹配。 首先,我们需要...
KMP算法的核心在于构建一个称为“部分匹配表”或“next数组”,用于存储模式串中每个位置的前缀和后缀的最大公共长度。 在构建next数组的过程中,我们需要遵循以下两个条件: 1. 当比较到某个位置时,如果模式串的...
kmp算法内容概况: 本文将介绍一种名为KMP的字符串匹配算法。KMP算法(Knuth-Morris-Pratt算法)是一种高效的字符串匹配算法,由Donald Knuth、Vaughan Pratt和James H. Morris共同发明。KMP算法通过使用一个称为...