1.Date中保存的是什么
在java中,只要我们执行
Date date = new Date();
就可以得到当前时间。如:
Date date = new Date(); System.out.println(date);输出结果是:
Thu Aug 24 10:15:29 CST 2017
也就是我执行上述代码的时刻:2017年8月24日10点15分29秒。是不是Date对象里存了年月日时分秒呢?不是的,Date对象里存的只是一个long型的变量,其值为自1970年1月1日0点至Date对象所记录时刻经过的毫秒数,调用Date对象getTime()方法就可以返回这个毫秒数,如下代码:
Date date = new Date(); System.out.println(date + ", " + date.getTime());输出如下:
Thu Aug 24 10:48:05 CST 2017, 1503542885955
即上述程序执行的时刻是2017年8月24日10点48分05秒,该时刻距离1970年1月1日0点经过了1503542885955毫秒。反过来说,输出的年月日时分秒其实是根据这个毫秒数来反算出来的。
2.时区
全球分为24个时区,相邻时区时间相差1个小时。比如北京处于东八时区,东京处于东九时区,北京时间比东京时间晚1个小时,而英国伦敦时间比北京晚7个小时(英国采用夏令时时,8月英国处于夏令时)。比如此刻北京时间是2017年8月24日11:17:10,则东京时间是2017年8月24日12:17:10,伦敦时间是2017年8月24日4:17:10。
既然Date里存放的是当前时刻距1970年1月1日0点时刻的毫秒数,如果此刻在伦敦、北京、东京有三个程序员同时执行如下语句:
Date date = new Date();那这三个date对象里存的毫秒数是相同的吗?还是北京的比东京的小3600000(北京时间比东京时间晚1小时,1小时为3600秒即3600000毫秒)?答案是,这3个Date里的毫秒数是完全一样的。确切的说,Date对象里存的是自格林威治时间( GMT)1970年1月1日0点至Date对象所表示时刻所经过的毫秒数。所以,如果某一时刻遍布于世界各地的程序员同时执行new Date语句,这些Date对象所存的毫秒数是完全一样的。也就是说,Date里存放的毫秒数是与时区无关的
继续上述例子,如果上述3个程序员调用那一刻的时间是北京时间2017年8月24日11:17:10,他们继续调用
System.out.println(date);那么北京的程序员将会打印出2017年8月24日11:17:10,而东京的程序员会打印出2017年8月24日12:17:10,伦敦的程序员会打印出2017年8月24日4:17:10。既然Date对象只存了一个毫秒数,为什么这3个毫秒数完全相同的Date对象,可以打印出不同的时间呢?这是因为Sysytem.out.println函数在打印时间时,会取操作系统当前所设置的时区,然后根据这个时区将同毫秒数解释成该时区的时间。当然我们也可以手动设置时区,以将同一个Date对象按不同的时区输出。可以做如下实验验证:
Date date = new Date(1503544630000L); // 对应的北京时间是2017-08-24 11:17:10 SimpleDateFormat bjSdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); // 北京 bjSdf.setTimeZone(TimeZone.getTimeZone("Asia/Shanghai")); // 设置北京时区 SimpleDateFormat tokyoSdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); // 东京 tokyoSdf.setTimeZone(TimeZone.getTimeZone("Asia/Tokyo")); // 设置东京时区 SimpleDateFormat londonSdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); // 伦敦 londonSdf.setTimeZone(TimeZone.getTimeZone("Europe/London")); // 设置伦敦时区 System.out.println("毫秒数:" + date.getTime() + ", 北京时间:" + bjSdf.format(date)); System.out.println("毫秒数:" + date.getTime() + ", 东京时间:" + tokyoSdf.format(date)); System.out.println("毫秒数:" + date.getTime() + ", 伦敦时间:" + londonSdf.format(date));输出为:
毫秒数:1503544630000, 北京时间:2017-08-24 11:17:10
毫秒数:1503544630000, 东京时间:2017-08-24 12:17:10
毫秒数:1503544630000, 伦敦时间:2017-08-24 04:17:10
可以看出,同一个Date对象,按不同的时区来格式化,将得到不同时区的时间。由此可见,Date对象里保存的毫秒数和具体输出的时间(即年月日时分秒)是模型和视图的关系,而时区(即Timezone)则决定了将同一个模型展示成什么样的视图。
3.从字符串中读取时间
有时我们会遇到从一个字符串中读取时间的要求,即从字符串中解析时间并得到一个Date对象,比如将"2017-8-24 11:17:10"解析为一个Date对象。现在问题来了,这个时间到底指的是北京时间的2017年8月24日11:17:10,还是东京时间的2017年8月24日11:17:10?如果指的是北京时间,那么这个时间对应的东京时间2017年8月24日12:17:10;如果指的是东京时间,那么这个时间对应的北京时间就是2017年8月24日10:17:10。因此,只说年月日时分秒而不说是哪个时区的,是有歧义的,没有歧义的做法是,给出一个时间字符串,同时指明这是哪个时区的时间。
从字符串中解析时间的正确作法是:指定时区来解析。示例如下:
String timeStr = "2017-8-24 11:17:10"; // 字面时间 SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); sdf.setTimeZone(TimeZone.getTimeZone("Asia/Shanghai")); // 设置北京时区 Date d = sdf.parse(timeStr); System.out.println(sdf.format(d) + ", " + d.getTime());</code>输出为:
2017-08-24 11:17:10, 1503544630000,
将一个时间字符串按不同时区来解释,得到的Date对象的值是不同的。验证如下:
String timeStr = "2017-8-24 11:17:10"; // 字面时间 SimpleDateFormat bjSdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); bjSdf.setTimeZone(TimeZone.getTimeZone("Asia/Shanghai")); Date bjDate = bjSdf.parse(timeStr); // 解析 System.out.println("字面时间: " + timeStr +",按北京时间来解释:" + bjSdf.format(bjDate) + ", " + bjDate.getTime()); SimpleDateFormat tokyoSdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); // 东京 tokyoSdf.setTimeZone(TimeZone.getTimeZone("Asia/Tokyo")); // 设置东京时区 Date tokyoDate = tokyoSdf.parse(timeStr); // 解析 System.out.println("字面时间: " + timeStr +",按东京时间来解释:" + tokyoSdf.format(tokyoDate) + ", " + tokyoDate.getTime());输出为:
字面时间: 2017-8-24 11:17:10,按北京时间来解释:2017-08-24 11:17:10, 1503544630000
字面时间: 2017-8-24 11:17:10,按东京时间来解释:2017-08-24 11:17:10, 1503541030000
可以看出,对于"2017-8-24 11:17:10"这个字符串,按北京时间来解释得到Date对象的毫秒数是
1503544630000;而按东京时间来解释得到的毫秒数是1503541030000,前者正好比后者大于3600000毫秒即1个小时,正好是北京时间和东京时间的时差。这很好理解,北京时间2017-08-24 11:17:10对应的毫秒数是1503544630000,而东京时间2017-08-24 11:17:10对应的北京时间其实是2017-08-24 10:17:10(因为北京时间比东京时间晚1个小时),北京时间2017-08-24 10:17:10自然比北京时间2017-08-24 11:17:10少3600000毫秒。
4.将字符串表示的时间转换成另一个时区的时间字符串
综合以上分析,如果给定一个时间字符串,并告诉你这是某个时区的时间,要将它转换为另一个时区的时间并输出,正确的做法是:
1.将字符串按原时区转换成Date对象;
2.将Date对象格式化成目标时区的时间。
比如,将北京时间"2017-8-24 11:17:10"输出成东京时间,代码为:
String timeStr = "2017-8-24 11:17:10"; // 字面时间 SimpleDateFormat bjSdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); bjSdf.setTimeZone(TimeZone.getTimeZone("Asia/Shanghai")); Date date = bjSdf.parse(timeStr); // 将字符串时间按北京时间解析成Date对象 SimpleDateFormat tokyoSdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); // 东京 tokyoSdf.setTimeZone(TimeZone.getTimeZone("Asia/Tokyo")); // 设置东京时区 System.out.println("北京时间: " + timeStr +"对应的东京时间为:" + tokyoSdf.format(date));
原文:https://blog.csdn.net/halfclear/article/details/77573956
相关推荐
内容概要:本文详细介绍了基于MATLAB GUI界面和卷积神经网络(CNN)的模糊车牌识别系统。该系统旨在解决现实中车牌因模糊不清导致识别困难的问题。文中阐述了整个流程的关键步骤,包括图像的模糊还原、灰度化、阈值化、边缘检测、孔洞填充、形态学操作、滤波操作、车牌定位、字符分割以及最终的字符识别。通过使用维纳滤波或最小二乘法约束滤波进行模糊还原,再利用CNN的强大特征提取能力完成字符分类。此外,还特别强调了MATLAB GUI界面的设计,使得用户能直观便捷地操作整个系统。 适合人群:对图像处理和深度学习感兴趣的科研人员、高校学生及从事相关领域的工程师。 使用场景及目标:适用于交通管理、智能停车场等领域,用于提升车牌识别的准确性和效率,特别是在面对模糊车牌时的表现。 其他说明:文中提供了部分关键代码片段作为参考,并对实验结果进行了详细的分析,展示了系统在不同环境下的表现情况及其潜在的应用前景。
嵌入式八股文面试题库资料知识宝典-计算机专业试题.zip
嵌入式八股文面试题库资料知识宝典-C and C++ normal interview_3.zip
内容概要:本文深入探讨了一款额定功率为4kW的开关磁阻电机,详细介绍了其性能参数如额定功率、转速、效率、输出转矩和脉动率等。同时,文章还展示了利用RMxprt、Maxwell 2D和3D模型对该电机进行仿真的方法和技术,通过外电路分析进一步研究其电气性能和动态响应特性。最后,文章提供了基于RMxprt模型的MATLAB仿真代码示例,帮助读者理解电机的工作原理及其性能特点。 适合人群:从事电机设计、工业自动化领域的工程师和技术人员,尤其是对开关磁阻电机感兴趣的科研工作者。 使用场景及目标:适用于希望深入了解开关磁阻电机特性和建模技术的研究人员,在新产品开发或现有产品改进时作为参考资料。 其他说明:文中提供的代码示例仅用于演示目的,实际操作时需根据所用软件的具体情况进行适当修改。
少儿编程scratch项目源代码文件案例素材-剑客冲刺.zip
少儿编程scratch项目源代码文件案例素材-几何冲刺 转瞬即逝.zip
内容概要:本文详细介绍了基于PID控制器的四象限直流电机速度驱动控制系统仿真模型及其永磁直流电机(PMDC)转速控制模型。首先阐述了PID控制器的工作原理,即通过对系统误差的比例、积分和微分运算来调整电机的驱动信号,从而实现转速的精确控制。接着讨论了如何利用PID控制器使有刷PMDC电机在四个象限中精确跟踪参考速度,并展示了仿真模型在应对快速负载扰动时的有效性和稳定性。最后,提供了Simulink仿真模型和详细的Word模型说明文档,帮助读者理解和调整PID控制器参数,以达到最佳控制效果。 适合人群:从事电力电子与电机控制领域的研究人员和技术人员,尤其是对四象限直流电机速度驱动控制系统感兴趣的读者。 使用场景及目标:适用于需要深入了解和掌握四象限直流电机速度驱动控制系统设计与实现的研究人员和技术人员。目标是在实际项目中能够运用PID控制器实现电机转速的精确控制,并提高系统的稳定性和抗干扰能力。 其他说明:文中引用了多篇相关领域的权威文献,确保了理论依据的可靠性和实用性。此外,提供的Simulink模型和Word文档有助于读者更好地理解和实践所介绍的内容。
嵌入式八股文面试题库资料知识宝典-2013年海康威视校园招聘嵌入式开发笔试题.zip
少儿编程scratch项目源代码文件案例素材-驾驶通关.zip
小区开放对周边道路通行能力影响的研究.pdf
内容概要:本文探讨了冷链物流车辆路径优化问题,特别是如何通过NSGA-2遗传算法和软硬时间窗策略来实现高效、环保和高客户满意度的路径规划。文中介绍了冷链物流的特点及其重要性,提出了软时间窗概念,允许一定的配送时间弹性,同时考虑碳排放成本,以达到绿色物流的目的。此外,还讨论了如何将客户满意度作为路径优化的重要评价标准之一。最后,通过一段简化的Python代码展示了遗传算法的应用。 适合人群:从事物流管理、冷链物流运营的专业人士,以及对遗传算法和路径优化感兴趣的科研人员和技术开发者。 使用场景及目标:适用于冷链物流企业,旨在优化配送路线,降低运营成本,减少碳排放,提升客户满意度。目标是帮助企业实现绿色、高效的物流配送系统。 其他说明:文中提供的代码仅为示意,实际应用需根据具体情况调整参数设置和模型构建。
少儿编程scratch项目源代码文件案例素材-恐怖矿井.zip
内容概要:本文详细介绍了基于STM32F030的无刷电机控制方案,重点在于高压FOC(磁场定向控制)技术和滑膜无感FOC的应用。该方案实现了过载、过欠压、堵转等多种保护机制,并提供了完整的源码、原理图和PCB设计。文中展示了关键代码片段,如滑膜观测器和电流环处理,以及保护机制的具体实现方法。此外,还提到了方案的移植要点和实际测试效果,确保系统的稳定性和高效性。 适合人群:嵌入式系统开发者、电机控制系统工程师、硬件工程师。 使用场景及目标:适用于需要高性能无刷电机控制的应用场景,如工业自动化设备、无人机、电动工具等。目标是提供一种成熟的、经过验证的无刷电机控制方案,帮助开发者快速实现并优化电机控制性能。 其他说明:提供的资料包括详细的原理图、PCB设计文件、源码及测试视频,方便开发者进行学习和应用。
基于有限体积法Godunov格式的管道泄漏检测模型研究.pdf
嵌入式八股文面试题库资料知识宝典-CC++笔试题-深圳有为(2019.2.28)1.zip
少儿编程scratch项目源代码文件案例素材-几何冲刺 V1.5.zip
Android系统开发_Linux内核配置_USB-HID设备模拟_通过root权限将Android设备转换为全功能USB键盘的项目实现_该项目需要内核支持configFS文件系统
C# WPF - LiveCharts Project
少儿编程scratch项目源代码文件案例素材-恐怖叉子 动画.zip
嵌入式八股文面试题库资料知识宝典-嵌⼊式⼯程师⾯试⾼频问题.zip