`

分布式之延时任务方案解析

阅读更多

by : http://www.cnblogs.com/rjzheng/p/8972725.html

引言

在开发中,往往会遇到一些关于延时任务的需求。例如

  • 生成订单30分钟未支付,则自动取消
  • 生成订单60秒后,给用户发短信

对上述的任务,我们给一个专业的名字来形容,那就是延时任务。那么这里就会产生一个问题,这个延时任务定时任务的区别究竟在哪里呢?一共有如下几点区别

  1. 定时任务有明确的触发时间,延时任务没有
  2. 定时任务有执行周期,而延时任务在某事件触发后一段时间内执行,没有执行周期
  3. 定时任务一般执行的是批处理操作是多个任务,而延时任务一般是单个任务

下面,我们以判断订单是否超时为例,进行方案分析

方案分析

(1)数据库轮询

思路

该方案通常是在小型项目中使用,即通过一个线程定时的去扫描数据库,通过订单时间来判断是否有超时的订单,然后进行update或delete等操作

实现

博主当年早期是用quartz来实现的(实习那会的事),简单介绍一下
maven项目引入一个依赖如下所示

    <dependency>
        <groupId>org.quartz-scheduler</groupId>
        <artifactId>quartz</artifactId>
        <version>2.2.2</version>
    </dependency>

调用Demo类MyJob如下所示

package com.rjzheng.delay1;

import org.quartz.JobBuilder;
import org.quartz.JobDetail;
import org.quartz.Scheduler;
import org.quartz.SchedulerException;
import org.quartz.SchedulerFactory;
import org.quartz.SimpleScheduleBuilder;
import org.quartz.Trigger;
import org.quartz.TriggerBuilder;
import org.quartz.impl.StdSchedulerFactory;
import org.quartz.Job;
import org.quartz.JobExecutionContext;
import org.quartz.JobExecutionException;

public class MyJob implements Job {
    public void execute(JobExecutionContext context)
            throws JobExecutionException {
        System.out.println("要去数据库扫描啦。。。");
    }

    public static void main(String[] args) throws Exception {
        // 创建任务
        JobDetail jobDetail = JobBuilder.newJob(MyJob.class)
                .withIdentity("job1", "group1").build();
        // 创建触发器 每3秒钟执行一次
        Trigger trigger = TriggerBuilder
                .newTrigger()
                .withIdentity("trigger1", "group3")
                .withSchedule(
                        SimpleScheduleBuilder.simpleSchedule()
                                .withIntervalInSeconds(3).repeatForever())
                .build();
        Scheduler scheduler = new StdSchedulerFactory().getScheduler();
        // 将任务及其触发器放入调度器
        scheduler.scheduleJob(jobDetail, trigger);
        // 调度器开始调度任务
        scheduler.start();
    }
}

运行代码,可发现每隔3秒,输出如下

要去数据库扫描啦。。。

优缺点

优点:简单易行,支持集群操作
缺点:(1)对服务器内存消耗大
   (2)存在延迟,比如你每隔3分钟扫描一次,那最坏的延迟时间就是3分钟
   (3)假设你的订单有几千万条,每隔几分钟这样扫描一次,数据库损耗极大

(2)JDK的延迟队列

思路

该方案是利用JDK自带的DelayQueue来实现,这是一个无界阻塞队列,该队列只有在延迟期满的时候才能从中获取元素,放入DelayQueue中的对象,是必须实现Delayed接口的。
DelayedQueue实现工作流程如下图所示


image


其中Poll():获取并移除队列的超时元素,没有则返回空
  take():获取并移除队列的超时元素,如果没有则wait当前线程,直到有元素满足超时条件,返回结果。

 

实现

定义一个类OrderDelay实现Delayed,代码如下

package com.rjzheng.delay2;

import java.util.concurrent.Delayed;
import java.util.concurrent.TimeUnit;

public class OrderDelay implements Delayed {
    
    private String orderId;
    private long timeout;

    OrderDelay(String orderId, long timeout) {
        this.orderId = orderId;
        this.timeout = timeout + System.nanoTime();
    }

    public int compareTo(Delayed other) {
        if (other == this)
            return 0;
        OrderDelay t = (OrderDelay) other;
        long d = (getDelay(TimeUnit.NANOSECONDS) - t
                .getDelay(TimeUnit.NANOSECONDS));
        return (d == 0) ? 0 : ((d < 0) ? -1 : 1);
    }

    // 返回距离你自定义的超时时间还有多少
    public long getDelay(TimeUnit unit) {
        return unit.convert(timeout - System.nanoTime(), TimeUnit.NANOSECONDS);
    }

    void print() {
        System.out.println(orderId+"编号的订单要删除啦。。。。");
    }
}

运行的测试Demo为,我们设定延迟时间为3秒

package com.rjzheng.delay2;

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.DelayQueue;
import java.util.concurrent.TimeUnit;

public class DelayQueueDemo {
     public static void main(String[] args) {  
            // TODO Auto-generated method stub  
            List<String> list = new ArrayList<String>();  
            list.add("00000001");  
            list.add("00000002");  
            list.add("00000003");  
            list.add("00000004");  
            list.add("00000005");  
            DelayQueue<OrderDelay> queue = new DelayQueue<OrderDelay>();  
            long start = System.currentTimeMillis();  
            for(int i = 0;i<5;i++){  
                //延迟三秒取出
                queue.put(new OrderDelay(list.get(i),  
                        TimeUnit.NANOSECONDS.convert(3, TimeUnit.SECONDS)));  
                    try {  
                         queue.take().print();  
                         System.out.println("After " +   
                                 (System.currentTimeMillis()-start) + " MilliSeconds");  
                } catch (InterruptedException e) {  
                    // TODO Auto-generated catch block  
                    e.printStackTrace();  
                }  
            }  
        }  
    
}

输出如下

00000001编号的订单要删除啦。。。。
After 3003 MilliSeconds
00000002编号的订单要删除啦。。。。
After 6006 MilliSeconds
00000003编号的订单要删除啦。。。。
After 9006 MilliSeconds
00000004编号的订单要删除啦。。。。
After 12008 MilliSeconds
00000005编号的订单要删除啦。。。。
After 15009 MilliSeconds

可以看到都是延迟3秒,订单被删除

优缺点

优点:效率高,任务触发时间延迟低。
缺点:(1)服务器重启后,数据全部消失,怕宕机
   (2)集群扩展相当麻烦
   (3)因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现OOM异常
   (4)代码复杂度较高

(3)时间轮算法

思路

先上一张时间轮的图(这图到处都是啦)



时间轮算法可以类比于时钟,如上图箭头(指针)按某一个方向按固定频率轮动,每一次跳动称为一个 tick。这样可以看出定时轮由个3个重要的属性参数,ticksPerWheel(一轮的tick数),tickDuration(一个tick的持续时间)以及 timeUnit(时间单位),例如当ticksPerWheel=60,tickDuration=1,timeUnit=秒,这就和现实中的始终的秒针走动完全类似了。

 

如果当前指针指在1上面,我有一个任务需要4秒以后执行,那么这个执行的线程回调或者消息将会被放在5上。那如果需要在20秒之后执行怎么办,由于这个环形结构槽数只到8,如果要20秒,指针需要多转2圈。位置是在2圈之后的5上面(20 % 8 + 1)

实现

我们用Netty的HashedWheelTimer来实现
给Pom加上下面的依赖

        <dependency>
            <groupId>io.netty</groupId>
            <artifactId>netty-all</artifactId>
            <version>4.1.24.Final</version>
        </dependency>

测试代码HashedWheelTimerTest如下所示

package com.rjzheng.delay3;

import io.netty.util.HashedWheelTimer;
import io.netty.util.Timeout;
import io.netty.util.Timer;
import io.netty.util.TimerTask;

import java.util.concurrent.TimeUnit;

public class HashedWheelTimerTest {
    static class MyTimerTask implements TimerTask{
        boolean flag;
        public MyTimerTask(boolean flag){
            this.flag = flag;
        }
        public void run(Timeout timeout) throws Exception {
            // TODO Auto-generated method stub
             System.out.println("要去数据库删除订单了。。。。");
             this.flag =false;
        }
    }
    public static void main(String[] argv) {
        MyTimerTask timerTask = new MyTimerTask(true);
        Timer timer = new HashedWheelTimer();
        timer.newTimeout(timerTask, 5, TimeUnit.SECONDS);
        int i = 1;
        while(timerTask.flag){
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
            System.out.println(i+"秒过去了");
            i++;
        }
    }
}

输出如下

1秒过去了
2秒过去了
3秒过去了
4秒过去了
5秒过去了
要去数据库删除订单了。。。。
6秒过去了

优缺点

优点:效率高,任务触发时间延迟时间比delayQueue低,代码复杂度比delayQueue低。
缺点:(1)服务器重启后,数据全部消失,怕宕机
   (2)集群扩展相当麻烦
   (3)因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现OOM异常

(4)redis缓存

思路一

利用redis的zset,zset是一个有序集合,每一个元素(member)都关联了一个score,通过score排序来取集合中的值
zset常用命令
添加元素:ZADD key score member [[score member] [score member] ...]
按顺序查询元素:ZRANGE key start stop [WITHSCORES]
查询元素score:ZSCORE key member
移除元素:ZREM key member [member ...]
测试如下

# 添加单个元素

redis> ZADD page_rank 10 google.com
(integer) 1


# 添加多个元素

redis> ZADD page_rank 9 baidu.com 8 bing.com
(integer) 2

redis> ZRANGE page_rank 0 -1 WITHSCORES
1) "bing.com"
2) "8"
3) "baidu.com"
4) "9"
5) "google.com"
6) "10"

# 查询元素的score值
redis> ZSCORE page_rank bing.com
"8"

# 移除单个元素

redis> ZREM page_rank google.com
(integer) 1

redis> ZRANGE page_rank 0 -1 WITHSCORES
1) "bing.com"
2) "8"
3) "baidu.com"
4) "9"

那么如何实现呢?我们将订单超时时间戳与订单号分别设置为score和member,系统扫描第一个元素判断是否超时,具体如下图所示


image

 

实现一

package com.rjzheng.delay4;

import java.util.Calendar;
import java.util.Set;

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.Tuple;

public class AppTest {
    private static final String ADDR = "127.0.0.1";
    private static final int PORT = 6379;
    private static JedisPool jedisPool = new JedisPool(ADDR, PORT);
    
    public static Jedis getJedis() {
       return jedisPool.getResource();
    }
    
    //生产者,生成5个订单放进去
    public void productionDelayMessage(){
        for(int i=0;i<5;i++){
            //延迟3秒
            Calendar cal1 = Calendar.getInstance();
            cal1.add(Calendar.SECOND, 3);
            int second3later = (int) (cal1.getTimeInMillis() / 1000);
            AppTest.getJedis().zadd("OrderId", second3later,"OID0000001"+i);
            System.out.println(System.currentTimeMillis()+"ms:redis生成了一个订单任务:订单ID为"+"OID0000001"+i);
        }
    }
    
    //消费者,取订单
    public void consumerDelayMessage(){
        Jedis jedis = AppTest.getJedis();
        while(true){
            Set<Tuple> items = jedis.zrangeWithScores("OrderId", 0, 1);
            if(items == null || items.isEmpty()){
                System.out.println("当前没有等待的任务");
                try {
                    Thread.sleep(500);
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
                continue;
            }
            int  score = (int) ((Tuple)items.toArray()[0]).getScore();
            Calendar cal = Calendar.getInstance();
            int nowSecond = (int) (cal.getTimeInMillis() / 1000);
            if(nowSecond >= score){
                String orderId = ((Tuple)items.toArray()[0]).getElement();
                jedis.zrem("OrderId", orderId);
                System.out.println(System.currentTimeMillis() +"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);
            }
        }
    }
    
    public static void main(String[] args) {
        AppTest appTest =new AppTest();
        appTest.productionDelayMessage();
        appTest.consumerDelayMessage();
    }
    
}

此时对应输出如下

1525086085261ms:redis生成了一个订单任务:订单ID为OID00000010
1525086085263ms:redis生成了一个订单任务:订单ID为OID00000011
1525086085266ms:redis生成了一个订单任务:订单ID为OID00000012
1525086085268ms:redis生成了一个订单任务:订单ID为OID00000013
1525086085270ms:redis生成了一个订单任务:订单ID为OID00000014
1525086088000ms:redis消费了一个任务:消费的订单OrderId为OID00000010
1525086088001ms:redis消费了一个任务:消费的订单OrderId为OID00000011
1525086088002ms:redis消费了一个任务:消费的订单OrderId为OID00000012
1525086088003ms:redis消费了一个任务:消费的订单OrderId为OID00000013
1525086088004ms:redis消费了一个任务:消费的订单OrderId为OID00000014
当前没有等待的任务
当前没有等待的任务
当前没有等待的任务

可以看到,几乎都是3秒之后,消费订单。

然而,这一版存在一个致命的硬伤,在高并发条件下,多消费者会取到同一个订单号,我们上测试代码ThreadTest

package com.rjzheng.delay4;

import java.util.concurrent.CountDownLatch;

public class ThreadTest {
    private static final int threadNum = 10;
    private static CountDownLatch cdl = new CountDownLatch(threadNum);
    static class DelayMessage implements Runnable{
        public void run() {
            try {
                cdl.await();
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
            AppTest appTest =new AppTest();
            appTest.consumerDelayMessage();
        }
    }
    public static void main(String[] args) {
        AppTest appTest =new AppTest();
        appTest.productionDelayMessage();
        for(int i=0;i<threadNum;i++){
            new Thread(new DelayMessage()).start();
            cdl.countDown();
        }
    }
}

输出如下所示

1525087157727ms:redis生成了一个订单任务:订单ID为OID00000010
1525087157734ms:redis生成了一个订单任务:订单ID为OID00000011
1525087157738ms:redis生成了一个订单任务:订单ID为OID00000012
1525087157747ms:redis生成了一个订单任务:订单ID为OID00000013
1525087157753ms:redis生成了一个订单任务:订单ID为OID00000014
1525087160009ms:redis消费了一个任务:消费的订单OrderId为OID00000010
1525087160011ms:redis消费了一个任务:消费的订单OrderId为OID00000010
1525087160012ms:redis消费了一个任务:消费的订单OrderId为OID00000010
1525087160022ms:redis消费了一个任务:消费的订单OrderId为OID00000011
1525087160023ms:redis消费了一个任务:消费的订单OrderId为OID00000011
1525087160029ms:redis消费了一个任务:消费的订单OrderId为OID00000011
1525087160038ms:redis消费了一个任务:消费的订单OrderId为OID00000012
1525087160045ms:redis消费了一个任务:消费的订单OrderId为OID00000012
1525087160048ms:redis消费了一个任务:消费的订单OrderId为OID00000012
1525087160053ms:redis消费了一个任务:消费的订单OrderId为OID00000013
1525087160064ms:redis消费了一个任务:消费的订单OrderId为OID00000013
1525087160065ms:redis消费了一个任务:消费的订单OrderId为OID00000014
1525087160069ms:redis消费了一个任务:消费的订单OrderId为OID00000014
当前没有等待的任务
当前没有等待的任务
当前没有等待的任务
当前没有等待的任务

显然,出现了多个线程消费同一个资源的情况。

解决方案

(1)用分布式锁,但是用分布式锁,性能下降了,该方案不细说。
(2)对ZREM的返回值进行判断,只有大于0的时候,才消费数据,于是将consumerDelayMessage()方法里的

if(nowSecond >= score){
    String orderId = ((Tuple)items.toArray()[0]).getElement();
    jedis.zrem("OrderId", orderId);
    System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);
}

修改为

if(nowSecond >= score){
    String orderId = ((Tuple)items.toArray()[0]).getElement();
    Long num = jedis.zrem("OrderId", orderId);
    if( num != null && num>0){
        System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);
    }
}

在这种修改后,重新运行ThreadTest类,发现输出正常了

思路二

该方案使用redis的Keyspace Notifications,中文翻译就是键空间机制,就是利用该机制可以在key失效之后,提供一个回调,实际上是redis会给客户端发送一个消息。是需要redis版本2.8以上。

实现二

在redis.conf中,加入一条配置

notify-keyspace-events Ex

运行代码如下

package com.rjzheng.delay5;

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPubSub;

public class RedisTest {
    private static final String ADDR = "127.0.0.1";
    private static final int PORT = 6379;
    private static JedisPool jedis = new JedisPool(ADDR, PORT);
    private static RedisSub sub = new RedisSub();

    public static void init() {
        new Thread(new Runnable() {
            public void run() {
                jedis.getResource().subscribe(sub, "__keyevent@0__:expired");
            }
        }).start();
    }

    public static void main(String[] args) throws InterruptedException {
        init();
        for(int i =0;i<10;i++){
            String orderId = "OID000000"+i;
            jedis.getResource().setex(orderId, 3, orderId);
            System.out.println(System.currentTimeMillis()+"ms:"+orderId+"订单生成");
        }
    }
    
    static class RedisSub extends JedisPubSub {
        @Override
        public void onMessage(String channel, String message) {
            System.out.println(System.currentTimeMillis()+"ms:"+message+"订单取消");
        }
    }
}

输出如下

1525096202813ms:OID0000000订单生成
1525096202818ms:OID0000001订单生成
1525096202824ms:OID0000002订单生成
1525096202826ms:OID0000003订单生成
1525096202830ms:OID0000004订单生成
1525096202834ms:OID0000005订单生成
1525096202839ms:OID0000006订单生成
1525096205819ms:OID0000000订单取消
1525096205920ms:OID0000005订单取消
1525096205920ms:OID0000004订单取消
1525096205920ms:OID0000001订单取消
1525096205920ms:OID0000003订单取消
1525096205920ms:OID0000006订单取消
1525096205920ms:OID0000002订单取消

可以明显看到3秒过后,订单取消了

优缺点

优点:(1)由于使用Redis作为消息通道,消息都存储在Redis中。如果发送程序或者任务处理程序挂了,重启之后,还有重新处理数据的可能性。
   (2)做集群扩展相当方便
   (3)时间准确度高
缺点:(1)需要额外进行redis维护

(5)使用消息队列

我们可以采用rabbitMQ的延时队列。RabbitMQ具有以下两个特性,可以实现延迟队列

  • RabbitMQ可以针对Queue和Message设置 x-message-tt,来控制消息的生存时间,如果超时,则消息变为dead letter
  • lRabbitMQ的Queue可以配置x-dead-letter-exchange 和x-dead-letter-routing-key(可选)两个参数,用来控制队列内出现了deadletter,则按照这两个参数重新路由。
    结合以上两个特性,就可以模拟出延迟消息的功能,具体的,我改天再写一篇文章,这里再讲下去,篇幅太长。

优缺点

优点: 高效,可以利用rabbitmq的分布式特性轻易的进行横向扩展,消息支持持久化增加了可靠性。
缺点:本身的易用度要依赖于rabbitMq的运维.因为要引用rabbitMq,所以复杂度和成本变高

总结

本文总结了目前互联网中,绝大部分的延时任务的实现方案。希望大家在工作中能够有所收获。
其实大家在工作中,百分九十的人还是以业务逻辑为主,很少有机会能够进行方案设计。所以博主不推荐在分布式这块,花太多时间,应该看看《手把手系列的文章》。不过,鉴于现在的面试造火箭,工作拧螺丝现象太过严重,所以博主开始写《分布式系列》,最后来个小漫画娱乐一下。

分享到:
评论

相关推荐

    Fourinone分布式并行计算四合一框架

     Fourinone对于分布式大数据量并行计算的解决方案不同于复杂的hadoop,它不像hadoop的中间计算结果依赖于hdfs,它使用不同于map/reduce的全新设计模式解决问题。Fourinone有“包工头”,“农民工”,“手工仓库”的...

    一种基于移动设备的分布式流处理系统设计.pdf

    这篇论文提供了针对移动设备的分布式流处理解决方案,不仅缓解了网络压力,还提高了系统的容错能力,对于移动应用开发者和分布式系统研究者具有重要的参考价值。通过这样的设计,未来智能设备可能更高效地处理本地...

    就地化分布式保护环网测试装置研制.pdf

    首先要明确文档中提及的关键词和专业术语,例如“分布式”、“分布式系统”、“分布式开发”、“环网测试”、“继电保护测试装置”、“双CPU架构”、“千兆以太网”、“环网报文”、“传输延时”、“测试用例”等。...

    金融分布式数据库TDSQL在腾讯的研发实践.pdf

    同时,TDSQL优化了SQL解析和执行,降低了延时,确保在大规模并发下保持高性能。 ### 2. 分布式实践 TDSQL的核心架构包括ZooKeeper、Scheduler、网关和MySQL实例。ZooKeeper作为协调者,负责实例状态监控、任务分配...

    基于Java平台的分布式网络爬虫系统研究.docx

    3. **数据存储系统**:用于存储爬取的数据,可以是关系型数据库、NoSQL数据库或其他存储解决方案。 4. **监控系统**:实时监控各节点的状态,提供故障检测和报警功能。 #### 四、反爬措施与应对方法 ##### (一)...

    8.爬虫系统架构设计方案1优化策略(三).zip

    5. **分布式爬虫**:当单台机器性能不足以应对大规模抓取时,可以采用分布式爬虫,将任务分散到多台机器上。如Scrapy-Cluster或分布式爬虫框架如Colly、Guzzle等。 6. **数据库优化**:合理设计数据库模型,避免...

    爬取中国土地市场网-土地公告公示

    通常,这需要一个协调系统来分配任务,如使用Redis的发布订阅功能或者基于任务队列的解决方案,如RabbitMQ或Celery。当一个爬虫节点完成一个任务后,可以从队列中取出下一个任务继续工作,直到所有任务完成。 在...

    weibo_spider_爬虫python_关键词爬虫_python_python爬虫_spider

    分布式爬虫可以将任务分发到多个节点,提高爬取效率并减轻单个服务器的压力。 5. **数据存储**:爬取到的数据通常会被保存到本地文件(如CSV、JSON格式)或者数据库(如MySQL、MongoDB)。这样便于后续的数据处理和...

    elastic-demo.zip

    通过以上对Elastic-Job的介绍及"elastic-demo.zip"的实战解析,我们可以看到Elastic-Job为分布式作业调度提供了强大的解决方案。在实际开发中,灵活运用这些知识可以极大地提高系统的稳定性和效率。

    火车票助手

    总之,“火车票助手”结合了网络爬虫、数据处理、实时通讯、多线程、分布式计算、用户交互等多个IT领域的技术,旨在为用户提供一个高效、安全的抢票解决方案。然而,使用此类工具时需注意合法性和道德性,遵循官方...

    Python多线程爬虫项目源码.zip

    在这个项目中,可能会用到这两个库之一,或者使用其他的解析库如lxml。 2. 多线程 Python标准库中的`threading`模块提供了创建和管理线程的功能。多线程爬虫可以同时处理多个网页请求,加快爬取速度。不过,由于...

    fourinone-3.04.25

    Fourinone对于分布式大数据量并行计算的解决方案不同于复杂的hadoop,它不像hadoop的中间计算结果依赖于hdfs,它使用不同于map/reduce的全新设计模式解决问题。Fourinone有“包工头”,“农民工”,“手工仓库”的几...

    利用Python语言轻松爬取数据[精品文档].pdf

    4. **Scrapy框架**:Scrapy是一个强大的爬虫框架,它提供了一整套的解决方案,包括请求管理、响应解析、数据存储等功能,支持多线程和分布式爬虫,适合处理大规模和复杂的爬虫项目。 5. **pyspider**:pyspider是另...

    开源项目-henrylee2cn-pholcus.zip

    2. **分布式**:Pholcus支持分布式爬虫模式,用户可以将爬虫任务分散到多台机器上执行,从而提升整体的抓取速度和稳定性。这种设计使得Pholcus能够在面对大规模网站时依然保持高效运作。 3. **多平台兼容**:...

    python网络数据采集

    Python网络数据采集是一种重要的技能,尤其在大数据时代,它被广泛应用于数据分析、研究、监控以及自动化任务中。Python因其简洁的语法和丰富的库支持,成为数据采集的首选语言。本书聚焦于利用Python进行网络数据...

    网络爬虫源码-Java版

    为应对这些,我们需要设置合适的延时、更换User-Agent、使用代理IP等。例如,使用ProxySelector: ```java Proxy proxy = new Proxy(Proxy.Type.HTTP, new InetSocketAddress("proxyHost", proxyPort)); ...

    基于Python的深度网络爬虫的设计与实现.zip

    对于大规模的抓取任务,单个爬虫可能无法胜任,此时可以使用Scrapy框架构建分布式爬虫。通过多线程或多进程并行抓取,以及使用如Redis或MongoDB作为中间数据存储,实现爬虫集群。 七、爬虫法律法规与道德规范 在...

    《大数据平台搭建与配置管理》期末试题试卷及答案.docx

    - Zookeeper主要负责调度和协调分布式系统中的各种任务和服务。 32. **ZK提供的序号** - ZK提供了一种称为Zxid的序号,可以在集群环境下使用的唯一ID。 33. **SQL语句的功能** - 利用SQL语句进行数据的插入、...

    多线程数据采集器源码

    常见的Python库如`requests`用于发送HTTP请求,`BeautifulSoup`或`lxml`用于解析HTML文档,以及`Scrapy`框架提供了一套完整的爬虫解决方案。 在"多线程数据采集器源码 v1.0"中,我们可能会看到以下关键组件和设计...

    行业分类-设备装置-一种电商平台订单抓取方法及系统.zip

    例如,采用分布式爬虫架构,将任务分配到多个节点执行,提高抓取效率。同时,系统的安全性也不容忽视,需防止数据泄露、保证抓取过程的合法性,遵守电商平台的服务条款和相关法律法规。 总结来说,"一种电商平台...

Global site tag (gtag.js) - Google Analytics