在设计高效率 AI 引擎时,大脑组织模型具有一定的价值。大脑和游戏系统间对应的任务分配如图所示:
将 AI 任务分解成几个具体的子模块,让其他类来采集这些子模块的输出,并将这些知识混合到游戏角色上。
如何设计 AI 的知识库与学习?
- 人脑会对所有的事情进行存储学习,但AI 系统需要一个可靠的系统来确定哪些是值得来学习的。
- 人脑不允许由于时间的流逝而降低记忆,AI 可以通过动态硬编码来锁住这些可塑性的变化,将其转移到一个长期的存储器中,但过多硬编码或使用不当,会使人或游戏角色变得病态/遗忘。
- 短期存储器(内存)仅保持较短时间的感知,根据其重要性进行过滤,然后存入长期存储器或简单遗忘。(注意广度和单一思想)
大脑使用“调节器(modulator)”根据语境对特殊情形下的存储器进行调节,AI 调节器可以重载整个 AI 的状态及行为,传统基于状态的 AI 可以借用 moudulation 的概念变得更加灵活。先前被警告过的敌人可以转换到一个完全不同的 Alerted 状态,并经过缓慢退化后又重新转换到 Normal 状态。但采用带修正器的状态系统时,可用一个“攻击性(aggressive)调节器” 进行编码来保持其正常的 Guard 状态。
- 人脑通过大脑中不同存储器中存储的事情来进行学习,这种通过偏差和联想来扩展关于世界的知识库通常有几种独立的实现方式:探测或直接体验、模仿、想象推断。游戏的学习方式可采用以下两种途径:统计那些与玩家进行对抗时凑效的行为、记录玩家跟 AI 对手对抗时的所作所为并对这些人类行为进行模仿或改进。
- 采用 AI 学习算法需要进行多次迭代,在快节奏短周期的游戏中学习将导致其性能急剧下降。一般会在使用前的制造过程中进行全部的学习,而在使用中不具备学习能力,直到满足速度和精度要求的新方法问世。
- 学习不一定都是有意识的,很多游戏使用 influence map 来进行无意识的学习。 influence map 系统允许对相同类型的信息进行累积,并以一种快速且易访问的方式对它们进行简单存储,同时保持迭代次数在很低的水平。这可以为 RTS 游戏的路径搜索算法提供躲避 “死亡区域(kill zone)”。
如何设计 AI 的认知系统?
- 大脑通过使用各种不同的系统,来对输入数据进行快速分类并设置优先级,从而实现感知(perception)。在游戏 AI 中,我们能在处理过程中挑选出任意层级的感知。一个运动类游戏的实体模型(mock-up)如下:
对任意特殊 AI 子系统进行编码时,应该确保只使用那些真正需要的感知。过度简化将很容易预测子系统的输出行为,敌人仅在一定的范围内才能听到声音,这样的子系统是很奇怪的,应该考虑初始距离和初始音量,衰减传播等声学特性。 - 决策系统从 AI 能够做的所有事情中过滤出当前的游戏状态。AI 技术的状态空间(state space),如果感知的结果孤立则可以采用状态系统的枚举空间响应,若响应是全范围连续的,那么采用神经网络会更合适,因为它们在连续响应域上能更好识别局部极值点。
如何设计看起来智能的系统(心智理论,ToM)?
ToM 更多是认知理论,它深刻指出了人具有理解他人的能力,并具有与其自身分离的思想和世界观。技术上 ToM 是有意识的智能体,它具有领会意图的能力,而不是对行动的严格认知。那么如何度量 ToM 是智能的呢, Turing 测试认为,如果程序可以成功与另一个实体玩家进行沟通,并且玩家分辨不出它是一台计算机,那么它就必定是智能的。
但事实上,我们希望游戏 AI 系统能够像人一样进行决策,从而表现出它们的高级特性并超越那些简单的玩法,因此我们必须模仿思想,而非行为。ToM 能够给程序员或设计者一些指导,让他们指导哪种类型的信息可以直接提供给玩家,哪种不应该提供,哪种可以摸棱两可地处理。
举一个例子,一个简单战场的布置,人类玩家位于地图的底部,4个 CPU 敌人对他进行了包围并在多个掩护点之间移动。规则如下:
如果没有人朝玩家射击,如果我装满了子弹且准备完毕,我将开始射击(该游戏每次只能有一个玩家可以射击)。
如果我暴露在外,我将前往最近的未被占领的掩护位置,并随机呼喊“掩护我!”、“在你左边!”等声音。
如果我处于掩护位置,我将重新装弹,然后等待那个家伙射击完毕,或许可以通过播放一些类似扫描的动画,使得看起来更像他正准备狙击玩家。
情景描述:4个敌兵进入了视野,其中一个迅速开始射击,而其余三个寻找掩护点。然后,先前的士兵停止了射击,呼叫“掩护我!”并向前跑去寻求掩护。同时另一个士兵跳出来并开始射击。在这个系统里,士兵对相互之间、对玩家的意图、对它们执行的一个基本的交替前进和掩护的军事调遣这个事实都完全没有觉察。但由于人类玩家自然地试图形成一个关于敌人的 ToM,在他看来,这是一个高度协同和智能的行为。因此该策略得以凑效。
如何在范围内构建一个有限最优(Bounded Optimality,BO)的决策系统?
对于大多数娱乐游戏来说,完美的理性是不希望和不必要的,游戏 AI 的目标是仿效人类性能的级别,而不是完美的理想。因此在有限的时间内,与其强迫程序找到理想的方案,还不如只是引导决策朝正确的方向前进。对现实问题的所谓最优解决方案在计算能力上往往都是难以实现的,而且没有限制条件的现实问题很少。BO 思想可以按某种方式简化成一个递增层次。例如:路径搜索就可以设定几个复杂层次,可以开始在很大的地图区域上进行路径搜索,然后再各个区域内,然后局部,最后再动态目标周围。每个连续的层次都逐渐比上一个好,但每个层次都使得玩家朝正确方向前进。
机器人技术给了我们什么启发?
游戏中有很多AI 技术来源于对机器人的研究,包括非常重要的 A* 算法,主要启发包括以下几个方面:
- 设计与解决方案的简单性。Brooks设计的机器人被采纳到火星上,它不试图依靠对障碍物的识别来通过某地区,采用一般搜索方法在障碍物上强行开道。
- 心智理论。
- 多层决策体系。现代机器人平台都使用一个子系统,其上运行着多个层级的决策结构系统,以体现由高到低的决策。这种从下而上的行为设计允许机器人在某种环境下实现一定程度的自主。子系统代表了最高优先级的决策,可以覆盖和修改来自顶层决策结构的行为,层级越高,优先级越底,层级的这种独立性使得系统的鲁棒性更高,层级间可自动容错。因此一个层级的混乱并不会破坏整体结构,只要系统其他部分返回到常态,机器人仍能完成任务。这种类型结构非常适合于需要在多个层级复杂度上同时进行决策的游戏,如RTS。
相关推荐
人工智能即Artificial Intelligence(AI),涉及通过计算机科学构建和模拟人类智能的理论、方法、技术及应用系统。人工智能的目标是使机器能够完成目前只有人类智能才能完成的复杂工作。人工智能领域的研究包括...
人工智能(AI)在精神心理学领域的应用已经成为科研和实践的重要方向。自1956年AI概念诞生以来,心理学家就开始探索如何利用这项技术增进理解和治疗精神疾病。近年来,借助深度学习技术,研究人员成功模拟了人类大脑...
《从脑科学、人工智能到应用》这一主题涵盖了多个领域的交叉知识,主要涉及神经科学、人工智能(AI)的基础理论以及它们在实际生活中的应用。这里我们将深入探讨这些领域的重要概念、发展历史以及它们如何相互影响。...
空间研究自动程序设计机器人工业自动化逻辑系统程序设计数学心理学图示学认识论心理学逻辑学自动定理证明机器视觉模式识别知识的模型化计算机语言声学语音学有关学科运筹学和表示光学图示学教学、科学和启发式AI系统...
本文旨在深入探讨人工智能作为科学与技术的双重角色,并通过分析强人工智能与弱人工智能之间的区别与联系,进一步理解它们各自的价值与挑战。 #### 一、强人工智能与弱人工智能 ##### 1.1 强人工智能:追求本质 强...
3. 认知心理学与认知神经科学的区别:认知神经心理学是认知心理学的一个分支,侧重于研究心理过程规律;而认知神经科学则是神经科学的一个分支,着重研究大脑本身的结构和功能。两者虽然侧重点不同,但都对理解人类...
试谈计算机人工智能应用与发展 一、人工智能概述 人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识、心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习、计算机...
人工智能(AI)已渗透到人们的生活中,根据人工智能(AI)的应用范围,可以分为三类:特殊人工智能(AI),通用人工智能(AI)和超级人工智能(AI)。当前,基于一个或多个专业领域的人工智能(AI)主要是一种特殊的...
AI人工智能技术的应用范围和案例 人工智能(Artificial Intelligence),也就是常说的 AI,是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个...
【山东大学人工智能专业认知科学与类脑计算2022考题回忆版】 在人工智能领域,认知科学与类脑计算是两个重要的交叉学科,它们在理解人类智能的本质、开发更智能的机器以及推动人工智能技术的发展方面起着至关重要的...
【教育心理学与人工智能神经网络设计】 教育心理学是研究人类学习过程和机制的学科,而人工智能神经网络设计的目标是创建能够模仿人类学习行为的机器。两者虽然研究对象不同,但都聚焦于理解和优化学习过程。教育...
* 心理学包括基础心理学与应用心理学,其研究涉及知觉、认知、情绪、思维、人格、行为习惯、人际关系、社会关系,人工智能,IQ,性格等许多领域。 * 心理学尝试用大脑运作来解释个体基本的行为与心理机能,同时,...
通过乐高机器人模型,特别是乐高头脑风暴机器人,探讨了认知科学的诸多方面,包括心理学、机器人动力学、人工智能、认知科学理论以及机器人设计和建构等。 首先,书中从认知科学的角度出发,分析了不同类型生物的...
"ChatGPT技术与大脑认知科学的关系" ChatGPT技术是基于生成模型的自然语言处理技术,...通过进一步探索ChatGPT技术的原理和应用,可以更好地理解大脑认知的本质和机制,推动人工智能技术在认知科学领域的应用和研究。
"AI人工智能技术的应用范围和案例" 人工智能(Artificial Intelligence),也就是常说的 AI,是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一...
【人工智能和应用】\n\n人工智能(AI)是计算机科学的一个分支,专注于研究、设计和应用智能机器。从学科角度看,AI旨在通过机器模仿和执行人脑的智能功能,包括判断、推理、证明、识别、感知、理解、设计、思考、...
人工智能的核心问题包括认知科学和数学方法的研究,涵盖了逻辑思维、形象思维、灵感思维、认识心理学和认识生理学等认知科学,以及离散数学、模糊数学等数学方法。尼尔逊提出的人工智能学科结构强调了博弈、常识性...
该理论最初由认知心理学家理查德·尼斯贝特提出,旨在通过多维度分析大脑如何在时间管理、选择决策、行动执行和学习成长等方面发挥作用。 #### 二、七维大脑的原理详解 ##### 1. 时间维度 时间维度关注的是大脑...
认知科学导论是研究人类认知过程的科学,其涵盖范围广泛,涉及到心理学、神经科学、人工智能、哲学等多个领域。其中,大脑图谱认知实验是一项重要的实验方法,旨在研究人类大脑的结构和功能。 在本实验中,我们使用...