`
猫耳呀
  • 浏览: 167627 次
社区版块
存档分类
最新评论

MaxCompute访问TableStore(OTS) 数据

阅读更多
摘要: MaxCompute作为阿里云大数据平台的核心计算组件,承担了集团内外大部分的分布式计算需求。

免费开通大数据服务:https://www.aliyun.com/product/odps

前言

MaxCompute作为阿里云大数据平台的核心计算组件,承担了集团内外大部分的分布式计算需求。而MaxCompute SQL作为分布式数据处理的主要入口,为快速方便处理/存储EB级别的离线数据提供了强有力的支持。 随着大数据业务的不断扩展,新的数据使用场景在不断产生,在这样的背景下,MaxCompute计算框架也在不断的演化,原来主要面对内部特殊格式数据的强大计算能力,也正在一步步的开放给不同的外部数据。 之前我们介绍了怎样在MaxCompute上处理存储在OSS上面的非结构化数据,在这里我们将进一步介绍如何将来自TableStore(OTS)的数据纳入MaxCompute上的计算生态,实现多种数据源之间的无缝连接。

对于在线服务等应用场景,NoSQL KV Store(e.g., BigTable, HBase)相比传统数据库,具有schema灵活,易扩展,实时性强等优点。阿里云TableStore(OTS) 是在阿里飞天分布式系统之上实现的大规模的NoSQL数据存储服务,提供海量KV数据的存储和实时访问。 在集团内部各BU以及外部阿里云生态圈中具有广泛的应用。 尤其是TableStore在行级别上的实时更新和可覆盖性写入等特性,相对于MaxCompute内置表append-only批量操作,提供了一个很好的补充。 但是TableStore作为一个偏存储的服务,对于存储在其上的海量数据,在大规模批量并行处理的计算能力有所欠缺。 在这样的背景下,打通MaxCompute的计算和TableStore存储之间的数据链路就显得尤其重要。

1. MaxCompute对TableStore数据进行读取和计算

1.0 使用前提和假设

1.0.1 MaxCompute 2.0计算框架非结构化功能的打开

首先要说明的是MaxCompute新一代的2.0计算框架还在灰度上线的过程中,默认设置下许多功能没有打开,所以要使用新引进的非结构化数据处理框架,需要申请MaxCompute 2.0试用,具体开通使用方法请参见 如何申请试用MaxCompute 2.0, 简单来说就是在开通2.0非结构化功能的前提下,在每个SQL query执行时必须带上如下setting:

set odps.task.major.version=2dot0_demo_flighting;

set odps.sql.planner.mode=lot;

set odps.sql.ddl.odps2=true;

set odps.sql.preparse.odps2=lot;

下面的范例中就不再重复了,但是本文介绍的所有功能均基于以上假设,当然这些特殊设置在2.0计算框架完全上线后就可以省略了。

1.0.2 TabelStore基本概念以及网络连通性

如果对于TableStore不熟悉或者对于整个KV table的概念比较陌生同学,可以通过TableStore的文档来先了解一些基本概念(比如主键,分区键,属性列等),这里的讨论不对这些基本概念做深入的解释和探讨。 同时对于MaxCompute非结构化框架的整体介绍可以参见之前在MaxCompute上处理存储在OSS上面的非结构化数据的介绍文章,包括External Table, StorageHandler的概念以及SERDEPROPERTIES的使用等。

MaxCompute与TableStore是两个独立的大数据计算以及大数据存储服务,所以两者之间的网络必须保证连通性。 对于MaxCompute公共云服务访问TableStore存储,推荐使用TableStore私网地址,也就是host名以ots-internal.aliyuncs.com作为结尾的地址,例如tablestore://odps-ots-dev.cn-shanghai.ots-internal.aliyuncs.com。

1.0.3 TabelStore类型与MaxCompute类型的对应

TableStore与MaxCompute都有其自身的类型系统。 在MaxCompute处理TableStore数据的时候,两者之间的类型对应关系如下:
MaxCompute Type TableStore Type
STRING STRING
BIGINT INT
DOUBLE DOUBLE
BINARY* BLOB

*其中要特别说明的是, 对于MaxCompute而言,BINARY类型是在新的2.0类型系统中引进的,所以如果有需要使用到BINARY类型的时候,除了上文1.0.1 里面提到的设置之外,还需要额外添加一个设置才能生效:

set odps.sql.type.system.odps2=true;

1.1 使用STS/RAM的方式访问TableStore数据

需要首先指出的是,MaxCompute计算服务要访问TableStore数据需要有一个安全的授权通道。 在这个问题上,MaxCompute结合了阿里云的访问控制服务(RAM)和令牌服务(STS)来实现对数据的安全反问:
首先需要在RAM中授权MaxCompute访问OSS的权限。登录RAM控制台,创建角色AliyunODPSDefaultRole,并将策略内容设置为:

{
  "Statement": [
    {
      "Action": "sts:AssumeRole",
      "Effect": "Allow",
      "Principal": {
        "Service": [
          "odps.aliyuncs.com"
        ]
      }
    }
  ],
  "Version": "1"
}

然后编辑该角色的授权策略,将权限AliyunODPSRolePolicy授权给该角色。

如果觉得这些步骤太麻烦,还可以登录阿里云账号点击此处完成一键授权。

1.2 创建External Table 关联MaxCompute与TableStore

与处理OSS数据的使用方法类似,MaxCompute通过EXTERNAL TABLE的方式来对接TableStore的数据:用户通过一个CREATE EXTERNAL TABLE的DDL语句,把对TableStore表数据的描述引入到MaxCompute的meta系统内部后,即可如同使用一个普通TABLE一样来实现对TableStore数据的处理。 这里先提供一个最简单的使用范例,并且通过该范例来讨论ODPS对接TableStore的一些概念和实现。

DROP TABLE IF EXISTS ots_table_external;

CREATE EXTERNAL TABLE IF NOT EXISTS ots_table_external
(
odps_orderkey bigint,
odps_orderdate string,
odps_custkey bigint,
odps_orderstatus string,
odps_totalprice double
)
STORED BY 'com.aliyun.odps.TableStoreStorageHandler' -- (1)
WITH SERDEPROPERTIES ( -- (2)
'tablestore.columns.mapping'=':o_orderkey,_orderdate, o_custkey, o_orderstatus,o_totalprice', -- (3)
'tablestore.table.name'='ots_tpch_orders' -- (4)
)
LOCATION 'tablestore://odps-ots-dev.cn-shanghai.ots-internal.aliyuncs.com'; -- (5)

这个DDL语句将一个TableStore表映射到了MaxCompute的一个External Table上。 在这个基础上,后继对TableStore数据的操作可以直接通过External Table进行。 这里先对上面这个CREATE EXTERNAL TABLE的DDL语句做一些解释:

1.com.aliyun.odps.TableStoreStorageHandler 是MaxCompute内置的处理TableStore数据的StorageHandler, 定义了MaxCompute和TableStore的交互,相关逻辑由MaxCompute实现。

2.SERDEPROPERITES可以理解成提供参数选项的接口,在使用TableStoreStorageHandler时,有两个必须指定的选项,分别是下面介绍的tablestore.columns.mapping和tablestore.table.name。 更多的可选选项将在后面其他例子中提及。

3.tablestore.columns.mapping选项:必需选项,用来描述对需要MaxCompute将访问的TableStore表的列,包括主键和属性列。 这其中以:打头的用来表示TableStore主键,例如这个例子中的:o_orderkey和:o_orderdate。 其他的均为属性列。 TableStore支持最少1个,最多4个主键,主键类型为bigint或string,其中第一个主键为分区键。 在指定映射的时候,用户必须提供指定TableStore表的所有主键,对于属性列则没有必要全部提供,可以只提供需要通过MaxCompute来访问的属性列。

4.tablestore.table.name:需要访问的TableStore表名。 如果指定的TableStore表名错误(不存在),则会报错,MaxCompute不会主动去创建TableStore表。

5.LOCATION clause用来指定TableStore的具体信息,包括instance名字,endpoint等。 值得注意的是这里对TableStore数据的安全访问是建立在前文介绍的RAM/STS授权的前提上的。

1.3 通过External Table访问TableStore数据进行计算

在用上述DDL创建出External Table之后,TableStore的数据就引入到了MaxCompute的生态中,我们现在就可以通过正常的MaxCompute SQL语法来访问TableStore数据了,比如:

SELECT odps_orderkey, odps_orderdate, SUM(odps_totalprice) AS sum_total
FROM ots_table_external
WHERE odps_orderkey > 5000 AND odps_orderkey < 7000 AND odps_orderdate >= '1996-05-03' AND odps_orderdate < '1997-05-01'
GROUP BY odps_orderkey, odps_orderdate
HAVING sum_total> 400000.0;

可以看到,在上面的这个例子,直接使用的就是我们所熟悉的MaxCompute SQL语法,访问TableStore的所有细节由MaxCompute内部处理。 这包括在列名的选择上:可以看到,在这个SQL里面,使用的列名是odps_orderkey,odps_totalprice等,而不是原始TableStore里面的主键名o_orderkey或属性列名o_totalprice了,因为我们在创建External Table的DDL语句里,已经做了对应的mapping。 当然因为具体的mapping是每个用户可以自己控制的,所以如果在创建External Table的时候保留原始的TableStore主键/列名也是可以的。

在底层的实现上,MaxCompute框架针对TableStore数据的存储特点做了各种优化,包括并发读取,SQL语句的filtering操作转义等。 举个例子,有filtering操作(比如上面的WHERE语句)时,MaxCompute会判断filtering key是否为TableStore表格的主键,来决定如何用TableStore的GetRange API来读取最小量数据,而不是无条件读取全量数据读到MaxCompute计算节点再做过滤操作。 当然这些实现的优化用户均无需感知,由MaxCompute计算框架负责来提供高效的实现。

另外如果需要对一份数据做多次计算,相较每次从TableStore去远程读数据,一个更高效的办法是先一次性把需要的数据导入到MaxCompute内部成为一个MaxCompute(内部)表,比如:

CREATE TABLE internal_orders AS
SELECT odps_orderkey, odps_orderdate, odps_custkey, odps_totalprice
FROM ots_table_external
WHERE odps_orderkey > 5000 ;

现在internal_orders就是一个我们熟悉的MaxCompute表了,也拥有所有MaxCompute内部表的特性:包括高效的压缩列存储数据格式,完整的内部宏数据以及统计信息等。 同时因为存储在MaxCompute内部,访问速度会比访问外部的TableStore更快,尤其适用于需要进行多次计算的热点数据。

2. 数据从MaxCompute写出到TableStore

打通MaxCompute和TableStore的数据生态,除了将TableStore作为批量数据处理的数据来源以外,一个另外的重要场景是将MaxCompute的数据处理结果输出到TableStore,利用TableStore可实时更新和可单行覆盖等特点,迅速的将离线计算的结果反馈给在线应用。 这种对TableStore的数据输出可以使用MaxCompute SQL的INSERT OVERWRITE来实现。

需要再次强调的是,MaxCompute不会主动创建外部的TableStore表,所以在对TableStore表进行数据输出之前,必须保证该表已经在TableStore上创建过(否则将报错)。 这样的设计是因为TableStore建表的过程可能涉及到CU的设置,计费,数据生命周期等一系列选项,这些必须由数据的所有者来决定: MaxCompute不拥有这些外部数据,也无法做出这些选择。

紧接上面的例子,假设我们已经使用上面的DDL语句创建了ots_table_external这个外部表来打通MaxCompute与TableStoreb数据表ots_tpch_orders的链路, 而且我们还有一份存储在在MaxCompute内部有一个名为internal_orders的数据,现在希望对internal_orders中的数据进行一定处理后再写回TableStore上,那么可以直接通过对外部表做INSERT OVERWITE TABLE的操作来实现:

INSERT OVERWRITE TABLE ots_table_external
SELECT odps_orderkey, odps_orderdate, odps_custkey, CONCAT(odps_custkey, 'SHIPPED'), CEIL(odps_totalprice)
FROM internal_orders;

在这里对表中的数据做了一些处理,并且把经过处理过的数据重新写回到了TableStore里。 对于TableStore这种KV数据的NoSQL存储介质,从MaxCompute的输出将只影响相对应主键所在的行:在上面这个例子中也就是只影响所有 odps_orderkey + odps_orderdate 这两个主键值能对应行上的数据。 而且在这些TabeleStore行上面,也只会去更新在创建External Table (ots_table_external)时指定的属性列,而不会去修改未在External Table里面出现的数据列。 关于MaxCompute外部表和TableStore表的对应关系,下文会更系统的介绍。

3. 技术细节以及高级用法

从本质上来看MaxCompute表是严格结构化的数据表,要求所有的行均遵从严格一致的schema,而TableStore的表中存储的是NoSQL的“半结构化”K-V数据。这些基本数据格式上的区别决定了在两个系统的交互过程中,行为会有一些区别。 同时MaxCompute作为一个分布式计算系统,读写TableStore通过并发执行来实现,这就需要对TableStore的数据有一个切割的机制。 在默认情况下,MaxCompute会提供一个系统认为最合适的处理方法,来实现对TableStore数据的访问和计算,而这些实现也能满足绝大部分用户的需求。 但是与此同时,为了满足一些对系统比较熟悉的高级用户的特殊需求,MaxCompute也提供了更多的可配置选项,这里做一些介绍。

3.1 MaxCompute外表与TableStore数据表的对应关系

MaxCompute外表与TableStore数据表是多对一(N:1)的关系。 也就是说可以有多个MaxCompute外表(External Table)来描述一张TableStore表。 这里的N:1是两个维度上的:
不同的MaxCompute外表可以描述一张TableStore表的不同属性列子集,比如如果在TableStore的一个表有3个主键列,(up to)20个属性列,那么通过MaxComptue的外表,主键必须提供完备,但是属性列则不必,比如可以只提供一个属性列,那么通过MaxCompute外表进行的所有操作,都只会基于主键和所提供的属性列上的数据。
不同的MaxCompute外表可以描述一张TableStore表的不同range,在本文的例子里都是一个外表对应一个TableStore表的全range,但实际使用的时候是可以通过额外选项来指定外表对应的range start和range end的, 这可以做到一个外表只映射一个TableStore表的子range。
这个功能这里不展开介绍,有需求的话可以联系MaxCompute技术团队。

3.2 MaxCompute读取TableStore数据时的并发度

TableStore是一个分布式KV数据存储系统,每个数据表都可能存储在多个后端server上,并且根据分区键进行分区,具体存储上的分区策略由TableStore决定。 目前通过MaxCompute读取TableStore数据,默认的并发度将与TableStore后端的分区数目相同。 唯一的例外是,在采用INTEGER64作为分区键,且TableStore后端的分区数目大于1时,MaxCompute会自动对并发度再做调整,在更高的并发度上读取数据。 此外TableStore自身的系统也在不断发展,以后将提供更强大的API接口给MaxCompute来使用,到时候将可以根据后端数据的大小,来准确的做出数据切割。 更准确的控制每个并发MaxCompute worker处理的数据量和计算时间。 这方面将在这些功能实现后再更新来做具体说明。

最后,如果用户对自己存储在TableStore数据有着非常好的了解,比如对于不同key range中的数据量都能做出很好的预估,MaxCompute还提供让用户自己指定并发度的选型:用户的控制甚至可以细化到指定每个worker应该处理哪个range的数据。 有这个需求的用户可以联系MaxCompute技术团队。

3.3 MaxCompute写出TableStore数据时的并发度

在将MaxCompute内部数据写出到TableStore时,并发度由MaxCompute根据数据量自动进行控制。 当然用户也可以手动调节SQL执行过程中的mapper/reducer数目来调整并发度。 但是绝大部分情况下, MaxCompute本身适配的并发度都是比较合理的,一般不建议自己手工设置mapper/reducer数目。 另外,在一些场景上,MaxCompute计算服务与TableStore存储服务之间会存在着需要适配的情况。一般来说MaxCompute可以调度起计算节点都比较充裕,而大量计算节点同时往TableStore写出数据时可能会打满网络。 这种情况下单纯调高MaxCompute计算节点数目来并发写出数据,并不会带来额外的提速。 所以在特别大的规模上,用户最好能提前和TableStore服务沟通,以保证TableStore能提供足够的吞吐量满足需求。

3.4 MaxCompute访问TableStore的网络连通性

因为MaxCompute与TableStore是两个分开的云服务,所以在不同的部署集群上的网络连通性有可能影响MaxCompute访问TableStore的数据的可达性。 关于TableStore的节点,实例,服务地址等概念,可以参见TableStore相关介绍。 如同上文介绍的,在MaxCompute公共云服务访问TableStore存储,推荐使用TableStore私网地址(即以ots-internal.aliyuncs.com结尾的host地址)。

4. 结语:构造大数据生态

随着MaxCompute非结构化数据处理框架的上线,MaxCompute开放了处理外部数据的接口,包括之前介绍的访问OSS数据,以及本文描述的访问TableStore数据。 我们希望借此来实现整个阿里云计算与数据的生态融合: 在不同的项目上,我们已经看到了在MaxCompute上处理OSS上的海量视频,图像等非结构化数据的巨大潜力。 随着TableStore数据支持的加入,期待计算和更多数据的碰撞能打通更多的应用场景,让OSS数据,TableStore数据以及MaxCompute内部存储的数据,能在MaxCompute的核心计算引擎上产生更大的价值。

原文链接:http://click.aliyun.com/m/45010/
分享到:
评论

相关推荐

    表格存储Table Store 原OTS 客户端

    阿里云表格存储(原OTS,现为Table Store)是一款基于分布式键值存储的NoSQL数据库服务,它提供了海量数据的高并发、低延迟存储和检索能力。作为一款强大的云数据库,Table Store尤其适合大规模互联网应用、物联网...

    OTS客户端 表格存储Table Store

    综上所述,表格存储Table Store和其OTS客户端为开发者提供了高效、稳定且灵活的数据存储解决方案,尤其适用于需要处理大规模、高并发和实时查询的场景。通过使用OTS客户端,开发者可以轻松地集成表格存储到自己的...

    aliyun-tablestore-python-sdk:Aliyun TableStore(原OTS)Python SDK

    阿里云表格存储是在阿里云飞天分布式系统之上的NoSQL数据存储服务,提供海量结构化数据的存储和实时访问。运行环境安装Python即可运行,支持python2.6,Python2.7,python3.3,python3.4,python3.5和python3.6。...

    MaxCompute数据开发实战—数据进入MaxCompute的N种方式.pdf

    - DataX是一款强大的离线数据同步工具/平台,能够实现在MySQL、Oracle、SqlServer、PostgreSQL、HDFS、Hive、ADS、HBase、OTS、OSS、MaxCompute等异构数据源之间的高效数据同步。 - **系统要求**: - Linux、...

    aliyun-tablestore-java-sdk:Aliyun TableStore(原OTS)JAVA SDK

    阿里云表格存储是阿里云自主研发的NoSQL数据存储服务,提供海量结构化数据的存储和实时访问。版本当前版本:4.12.1运行环境JDK 6及其以上安装Maven方式下载或者通过Maven: &lt; dependency&gt; &lt; groupId&gt;...

    阿里云OTS查询工具

    阿里云OTS(Open Table Service)查询工具是一款专为开发者设计的高效、便捷的数据查询软件,尤其适用于处理大量的结构化数据。OTS是阿里云提供的分布式NoSQL数据库服务,它支持高并发、低延迟的读写操作,适用于大...

    aliyun-tablestore-hbase-client:阿里云tablestore hbase客户端

    适用于Java的Aliyun Tablestore HBase客户端 是阿里云主打的NoSQL大数据分布式数据库,目前已经扩展服务于众多阿里巴巴集团内部和外部应用,包括邮箱,钉钉,菜鸟,搜索,交易,推荐等。 表格存储的设计目标就是处理...

    第9课+表格存储TableStore的使用和操作.docx

    【表格存储TableStore】是阿里云提供的一种分布式NoSQL数据库服务,主要特点是高并发、低延迟和海量数据存储。本课程旨在介绍如何管理和操作表格存储,包括实例管理和数据表管理。 ## 实例管理 ### 创建实例 1. ...

    aliyun-tablestore-helper

    aliyun-tablestore-helper阿里云 tablestore 辅助方法const {TSHelper,TSSet,TSGet,TSRange,...创建tablestore表TSCreate.reset("abc",{hash:String},function (err, data) {})表操作向tablestore写数据TSSet.select(

    阿里云ots客户端

    阿里云的ots客户端 ,可以直接连接ots进行增删改查等功能。不过首先需要开通阿里云服务的,才可以访问阿里云的ots

    开放结构化数据服务 OTS.zip

    《开放结构化数据服务 OTS.zip》是一个包含有关数据结构与算法丰富知识的压缩包,其核心内容聚焦在数据结构这一重要计算机科学基础领域。数据结构是计算机存储、组织数据的方式,它研究如何在计算机中有效地存储和...

    SOTS数据集8:2划分训练和验证集,可用于训练去雾模型

    SOTS(Synthetic Objective Testing Set)去雾数据集是RESIDE(REalistic Single Image DEhazing)数据集的一个重要组成部分,专门用于单图像去雾算法的客观评估。以下是对SOTS去雾数据集的详细介绍: 一、数据集...

    深度学习去雾数据集RESIDE数据集,ITS

    去雾数据集 ,reside数据集

    OTS安装手册

    OTS安装手册 OTS安装手册是帮助用户快速正确安装OTS环境的指导手册。该手册详细介绍了OTS系统的安装和卸载方法,包括使用RPM包安装和源码安装两种方式。 OTS系统安装方法 OTS系统安装可以通过RPM包安装和源码安装...

    数据同步工具datax

    linux datax 同步工具离线数据同步工具,实现包括 MySQL、Oracle、SqlServer、Postgre、HDFS、Hive、ADS、HBase、TableStore(OTS)、MaxCompute(ODPS)、DRDS 等各种异构数据源之间高效的数据同步功能。Github地址:...

    进销存仓库管理系统通用版OTS515

    6. **权限控制**:设置多级权限,确保敏感信息的安全,同时便于团队协作,每个员工只能访问和操作自己职责范围内的数据。 通过OTS进销存软件,企业能够实现业务流程的自动化,降低人为错误,提升整体运营效率。不仅...

    datax导数据工具,高性能的数据迁移工具

    DataX作为一个全量数据迁移工具,它提供了丰富的数据源支持,包括但不限于HDFS、MySQL、Oracle、SQLServer、PostgreSQL、HBase、ADS、MaxCompute(ODPS)、TableStore(OTS)、Hive、ADS、Kafka、RocketMQ等。...

    07-基于阿里云构建数据仓库.rar

    5. **TableStore**:原OTS,是阿里云提供的NoSQL数据库服务,适用于大规模结构化半结构化数据存储,支持高吞吐量读写,适合实时数据仓库场景。 6. **QuickBI**:阿里云的商业智能工具,提供数据可视化和报表制作...

Global site tag (gtag.js) - Google Analytics