`
zhangyuanjava
  • 浏览: 129961 次
  • 性别: Icon_minigender_1
  • 来自: 河北
社区版块
存档分类
最新评论

数据库(分库分表)中间件对比

 
阅读更多

分区:对业务透明,分区只不过把存放数据的文件分成了许多小块,例如mysql中的一张表对应三个文件.MYD,MYI,frm。

根据一定的规则把数据文件(MYD)和索引文件(MYI)进行了分割,分区后的表呢,还是一张表。分区可以把表分到不同的硬盘上,但不能分配到不同服务器上。

  • 优点:数据不存在多个副本,不必进行数据复制,性能更高。
  • 缺点:分区策略必须经过充分考虑,避免多个分区之间的数据存在关联关系,每个分区都是单点,如果某个分区宕机,就会影响到系统的使用。

 

分片:对业务透明,在物理实现上分成多个服务器,不同的分片在不同服务器上

个人感觉跟分库没啥区别,只是叫法不一样而已,值得一提的是关系型数据库和nosql数据库分片的概念以及处理方式是一样的吗?

请各位看官自行查找相关资料予以解答

 

分表:当数据量大到一定程度的时候,都会导致处理性能的不足,这个时候就没有办法了,只能进行分表处理。也就是把数据库当中数据根据按照分库原则分到多个数据表当中,

这样,就可以把大表变成多个小表,不同的分表中数据不重复,从而提高处理效率。

分表也有两种方案:

1. 同库分表:所有的分表都在一个数据库中,由于数据库中表名不能重复,因此需要把数据表名起成不同的名字。

  • 优点:由于都在一个数据库中,公共表,不必进行复制,处理更简单
  • 缺点:由于还在一个数据库中,CPU、内存、文件IO、网络IO等瓶颈还是无法解决,只能降低单表中的数据记录数。

      表名不一致,会导后续的处理复杂(参照mysql meage存储引擎来处理)

2. 不同库分表:由于分表在不同的数据库中,这个时候就可以使用同样的表名。

  • 优点:CPU、内存、文件IO、网络IO等瓶颈可以得到有效解决,表名相同,处理起来相对简单
  • 缺点:公共表由于在所有的分表都要使用,因此要进行复制、同步。

    一些聚合的操作,join,group by,order等难以顺利进行

参考博客:http://www.cnblogs.com/langtianya/p/4997768.html,http://blog.51yip.com/mysql/949.html

 

分库:分表和分区都是基于同一个数据库里的数据分离技巧,对数据库性能有一定提升,但是随着业务数据量的增加,

原来所有的数据都是在一个数据库上的,网络IO及文件IO都集中在一个数据库上的,因此CPU、内存、文件IO、网络IO都可能会成为系统瓶颈。

当业务系统的数据容量接近或超过单台服务器的容量、QPS/TPS接近或超过单个数据库实例的处理极限等

此时,往往是采用垂直和水平结合的数据拆分方法,把数据服务和数据存储分布到多台数据库服务器上。

分库只是一个通俗说法,更标准名称是数据分片,采用类似分布式数据库理论指导的方法实现,对应用程序达到数据服务的全透明和数据存储的全透明

 

读写分离方案

海量数据的存储及访问,通过对数据库进行读写分离,来提升数据的处理能力。读写分离它的方案特点是数据库产生多个副本,

数据库的写操作都集中到一个数据库上,而一些读的操作呢,可以分解到其它数据库上。这样,只要付出数据复制的成本,

就可以使得数据库的处理压力分解到多个数据库上,从而大大提升数据处理能力。

 

 


  

 

1>Cobar 是提供关系型数据库(MySQL)分布式服务的中间件,它可以让传统的数据库得到良好的线性扩展,并看上去还是一个数据库,对应用保持透明。

Cobar以Proxy的形式位于前台应用和实际数据库之间,对前台的开放的接口是MySQL通信协议,将前台SQL语句变更并按照数据分布规则发到合适的后台数据分库,再合并返回结果,模拟单库下的数据库行为。

Cobar属于中间层方案,在应用程序和MySQL之间搭建一层Proxy。中间层介于应用程序与数据库间,需要做一次转发,而基于JDBC协议并无额外转发,直接由应用程序连接数据库,

性能上有些许优势。这里并非说明中间层一定不如客户端直连,除了性能,需要考虑的因素还有很多,中间层更便于实现监控、数据迁移、连接管理等功能。

Cobar属于阿里B2B事业群,始于2008年,在阿里服役3年多,接管3000+个MySQL数据库的schema,集群日处理在线SQL请求50亿次以上。

由于Cobar发起人的离职,Cobar停止维护。后续的类似中间件,比如MyCAT建立于Cobar之上,包括现在阿里服役的RDRS其中也复用了Cobar-Proxy的相关代码。

 

2>MyCAT是社区爱好者在阿里cobar基础上进行二次开发,解决了cobar当时存 在的一些问题,并且加入了许多新的功能在其中。目前MyCAT社区活 跃度很高,

目前已经有一些公司在使用MyCAT。总体来说支持度比 较高,也会一直维护下去,发展到目前的版本,已经不是一个单纯的MySQL代理了,

它的后端可以支持MySQL, SQL Server, Oracle, DB2, PostgreSQL等主流数据库,也支持MongoDB这种新型NoSQL方式的存储,未来还会支持更多类型的存储。

MyCAT是一个强大的数据库中间件,不仅仅可以用作读写分离,以及分表分库、容灾管理,而且可以用于多租户应用开发、云平台基础设施,让你的架构具备很强的适应性和灵活性,

借助于即将发布的MyCAT只能优化模块,系统的数据访问瓶颈和热点一目了然,根据这些统计分析数据,你可以自动或手工调整后端存储,将不同的表隐射到不同存储引擎上,而整个应用的代码一行也不用改变。

MyCAT是在Cobar基础上发展的版本,两个显著提高:后端由BIO改为NIO,并发量有大幅提高; 增加了对Order By, Group By, Limit等聚合功能

(虽然Cobar也可以支持Order By, Group By, Limit语法,但是结果没有进行聚合,只是简单返回给前端,聚合功能还是需要业务系统自己完成)

 

3>TDDL是Tabao根据自己的业务特点开发了(Tabao Distributed Data Layer, 外号:头都大了)。主要解决了分库分表对应用的透明化以及异构数据库之间的数据复制,

它是一个基于集中式配置的jdbc datasourcce实现,具有主备,读写分离,动态数据库配置等功能。

TDDL并非独立的中间件,只能算作中间层,处于业务层和JDBC层中间,是以Jar包方式提供给应用调用,属于JDBC Shard的思想。

TDDL源码:https://github.com/alibaba/tb_tddl 
TDDL复杂度相对较高。当前公布的文档较少,只开源动态数据源,分表分库部分还未开源,还需要依赖diamond,不推荐使用。

 

4>DRDS是阿里巴巴自主研发的分布式数据库服务(此项目不开源),DRDS脱胎于阿里巴巴开源的Cobar分布式数据库引擎,吸收了Cobar核心的Cobar-Proxy源码

实现了一套独立的类似MySQL-Proxy协议的解析端,能够对传入的SQL进行解析和处理,对应用程序屏蔽各种复杂的底层DB拓扑结构,获得单机数据库一样的使用体验,

同时借鉴了淘宝TDDL丰富的分布式数据库实践经验,实现了对分布式Join支持,SUM/MAX/COUNT/AVG等聚合函数支持以及排序等函数支持,

通过异构索引、小表广播等解决分布式数据库使用场景下衍生出的一系列问题,最终形成了完整的分布式数据库方案。

 

5>Atlas是一个位于应用程序与MySQL之间的基于MySQL协议的数据中间层项目它是在mysql-proxy 0.8.2版本上对其进行优化,360团队基于mysql proxy 把lua用C改写,

它实现了MySQL的客户端和服务端协议,作为服务端与应用程序通讯,同时作为客户端与MySQL通讯。它对应用程序屏蔽了DB的细节。

Altas不能实现分布式分表,所有的字表必须在同一台DB的同一个DataBase里且所有的字表必须实现建好,Altas没有自动建表的功能。

原有版本是不支持分库分表, 目前已经放出了分库分表版本。在网上看到一些朋友经常说在高并 发下会经常挂掉,如果大家要使用需要提前做好测试。

 

6>DBProxy是美团点评DBA团队针对公司内部需求,在奇虎360公司开源的Atlas做了很多改进工作,形成了新的高可靠、高可用企业级数据库中间件

其特性主要有:读写分离、负载均衡、支持分表、IP过滤、sql语句黑名单、DBA平滑下线DB、从库流量配置、动态加载配置项

项目的Github地址是https://github.com/Meituan-Dianping/DBProxy

 

7>sharding-JDBC是当当应用框架ddframe中,从关系型数据库模块dd-rdb中分离出来的数据库水平分片框架,实现透明化数据库分库分表访问。

Sharding-JDBC是继dubbox和elastic-job之后,ddframe系列开源的第3个项目。

Sharding-JDBC直接封装JDBC API,可以理解为增强版的JDBC驱动,旧代码迁移成本几乎为零:

  • 可适用于任何基于Java的ORM框架,如JPA、Hibernate、Mybatis、Spring JDBC Template或直接使用JDBC。
  • 可基于任何第三方的数据库连接池,如DBCP、C3P0、 BoneCP、Druid等。
  • 理论上可支持任意实现JDBC规范的数据库。虽然目前仅支持MySQL,但已有支持Oracle、SQLServer等数据库的计划。

Sharding-JDBC定位为轻量Java框架,使用客户端直连数据库,以jar包形式提供服务,无proxy代理层,无需额外部署,无其他依赖,DBA也无需改变原有的运维方式。

Sharding-JDBC分片策略灵活,可支持等号、between、in等多维度分片,也可支持多分片键。

SQL解析功能完善,支持聚合、分组、排序、limit、or等查询,并支持Binding Table以及笛卡尔积表查询。

 

 

知名度较低的:

Heisenberg

Baidu.
其优点:分库分表与应用脱离,分库表如同使用单库表一样,减少db连接数压力,热重启配置,可水平扩容,遵守MySQL原生协议,读写分离,无语言限制,

mysqlclient, c, java都可以使用Heisenberg服务器通过管理命令可以查看,如连接数,线程池,结点等,并可以调整采用velocity的分库分表脚本进行自定义分库表,相当的灵活。

https://github.com/brucexx/heisenberg(开源版已停止维护)

CDS

JD. Completed Database Sharding.
CDS是一款基于客户端开发的分库分表中间件产品,实现了JDBC标准API,支持分库分表,读写分离和数据运维等诸多共,提供高性能,高并发和高可靠的海量数据路由存取服务,

业务系统可近乎零成本进行介入,目前支持MySQL, Oracle和SQL Server.
(架构上和Cobar,MyCAT相似,直接采用jdbc对接,没有实现类似MySQL协议,没有NIO,AIO,SQL Parser模块采用JSqlParser, Sql解析器有:druid>JSqlParser>fdbparser.)

DDB

网易. Distributed DataBase.
DDB经历了三次服务模式的重大更迭:Driver模式->Proxy模式->云模式。

Driver模式:基于JDBC驱动访问,提供一个db.jar, 和TDDL类似, 位于应用层和JDBC之间. Proxy模式:在DDB中搭建了一组代理服务器来提供标准的MySQL服务,

在代理服务器内部实现分库分表的逻辑。应用通过标准数据库驱动访问DDB Proxy, Proxy内部通过MySQL解码器将请求还原为SQL, 并由DDB Driver执行得到结果。

私有云模式:基于网易私有云开发的一套平台化管理工具Cloudadmin, 将DDB原先Master的功能打散,一部分分库相关功能集成到proxy中,

如分库管理、表管理、用户管理等,一部分中心化功能集成到Cloudadmin中,如报警监控,此外,Cloudadmin中提供了一键部署、自动和手动备份,版本管理等平台化功能。

 

OneProxy:

数据库界大牛,前支付宝数据库团队领导楼方鑫开发,基于mysql官方 的proxy思想利用c进行开发的,OneProxy是一款商业收费的中间件, 楼总舍去了一些功能点,

专注在性能和稳定性上。有朋友测试过说在 高并发下很稳定。

Oceanus(58同城数据库中间件)

Oceanus致力于打造一个功能简单、可依赖、易于上手、易于扩展、易于集成的解决方案,甚至是平台化系统。拥抱开源,提供各类插件机制集成其他开源项目,

新手可以在几分钟内上手编程,分库分表逻辑不再与业务紧密耦合,扩容有标准模式,减少意外错误的发生。

 

Vitess:

这个中间件是Youtube生产在使用的,但是架构很复杂。 与以往中间件不同,使用Vitess应用改动比较大要 使用他提供语言的API接口,我们可以借鉴他其中的一些设计思想。

Kingshard:

Kingshard是前360Atlas中间件开发团队的陈菲利用业务时间 用go语言开发的,目前参与开发的人员有3个左右, 目前来看还不是成熟可以使用的产品,需要在不断完善。

MaxScale与MySQL Route:

这两个中间件都算是官方的吧,MaxScale是mariadb (MySQL原作者维护的一个版本)研发的,目前版本不支持分库分表。

MySQL Route是现在MySQL 官方Oracle公司发布出来的一个中间件。

 

 

转载自:https://www.cnblogs.com/wangzhongqiu/p/7100332.html

  • 大小: 357.7 KB
分享到:
评论

相关推荐

    当当开源sharding-jdbc-轻量级数据库分库分表中间件

    ### 当当开源Sharding-JDBC:轻量级数据库分库分表中间件 #### 概述 当当网近期开源了一款名为Sharding-JDBC的轻量级数据库分库分表中间件。作为一款高性能、易用性高的数据库水平分片框架,Sharding-JDBC在设计上...

    学习kingshard(一个mysql分库分表中间件).zip

    四、Kingshard与其他分库分表中间件对比 Kingshard与ShardingSphere、MyCat等其他分库分表中间件相比,各有优势。Kingshard以其轻量级、高性能的特点受到一部分开发者的青睐,而ShardingSphere则拥有更丰富的生态和...

    学习kingshard(一个mysql分库分表中间件)-study-kingshard.zip

    《深入学习Kingshard:MySQL分库分表中间件实战》 Kingshard,作为一款开源的MySQL分库分表中间件,旨在解决大数据场景下的高性能读写问题。本文将全面解析Kingshard的设计原理、核心功能以及如何在实际项目中进行...

    mycat+mysql+jdbc实现根据手机号尾号分库分表存储以及效率对比操作代码()

    标题中的“mycat+mysql+jdbc实现根据手机号尾号分库分表存储”涉及的是分布式数据库中间件Mycat与MySQL数据库以及Java JDBC接口的结合使用。Mycat是一款开源的分布式数据库系统,用于解决大数据量、高并发的场景下的...

    打造专业开发者指南:针对ShardingProxy分库分表解决策略的深度剖析 – 详解部署、使用、服务治理与优化技巧

    ShardingProxy是一款面向Java开发者的开源中间件,用于实现数据库分库分表的解决方案,尤其在处理大数据量的场景下显得尤为重要。它提供了一个统一的数据库代理服务,使得应用程序可以像操作单个数据库一样操作...

    分布式数据访问层中间件的研究与实现.pdf

    本篇文章的关键词包括:数据库中间件、分库分表、读写分离、限流以及MySQL。这些关键词指向了分布式数据访问层中间件的几个核心功能:分库分表能够将数据分布存储在多个数据库服务器上,有效提高数据处理的可伸缩性...

    分布式mysql邮件解析1

    总结来说,分布式MySQL邮件解析系统利用数据库中间件如MyCat来处理大规模邮件数据,通过分库分表、读写分离、主从复制等策略优化性能和扩展性。MyCat作为中间件,提供了丰富的配置选项和功能,使得在实际应用中能够...

    数据库中间件MyCat的介绍

    MyCat的核心功能是对大表进行水平分割,实现分库分表,从而处理海量数据,提高数据库系统的可扩展性和性能。 ### MyCat应用场景 1. **读写分离**:MyCat可以实现简单的读写分离,将读操作负载均衡到多个从库,减轻...

    proxy与mycat对比测试

    接下来是Mycat,这是一个开源的分布式数据库中间件,支持SQL92标准,具备强大的分库分表能力。Mycat不仅可以实现数据库的读写分离,还能进行水平拆分,将大数据量的表分散到多个物理节点上,从而提高查询效率。在...

    mycat指南.zip

    1. **schema.xml**:定义数据库分片策略、数据源等,如分库分表规则、路由规则、序列生成策略等。 2. **server.xml**:配置 Mycat 服务器参数,如端口号、日志级别、线程池大小等。 3. **system.properties**:全局...

    MySQL面试经典100题(收藏版,附答案).doc

    - 常见分库分表中间件包括Sharding-JDBC、Mycat、TDDL、Oceanus、Vitess和Atlas等。 - 分库分表面临的问题包括事务处理、跨节点JOIN、统计计算、数据迁移、ID生成、排序分页等挑战。 6. **InnoDB与MyISAM的区别**...

    Mycat权威指南

    Mycat作为一款开源的、基于Java开发的数据库中间件,它在大数据量、高并发的场景下,能够实现对MySQL数据库的分库分表,提高数据库系统的性能和可扩展性。 一、Mycat简介 Mycat是Java开发者社区基于MySQL的Scale-...

    mycat入门到精通教程

    与ShardingSphere、Cobar等其他分库分表中间件对比,分析各自的优缺点,选择最适合的解决方案。 总之,Mycat 是一款强大的分布式数据库中间件,通过深入学习和实践,我们可以充分利用其特性,为大规模互联网应用...

    ShardingSphere实战场景&与Atlas和Mycat对比(1)预习1

    2. **大数据量场景**:对于具有海量数据的应用,如日志分析系统、用户行为分析平台等,需要通过分库分表来优化查询性能和存储效率。 3. **混合事务和分析处理(HTAP)**:ShardingSphere 支持在同一个应用中同时处理...

    MySQL 75道面试题及答案.docx

    总的来说,MySQL面试涉及的内容广泛,包括索引的使用与优化、死锁处理、SQL优化、分库分表策略以及存储引擎的对比等,这些都需要深入理解和实践来掌握。在准备面试时,全面了解这些知识点对于提升面试成功率至关重要...

    新一代分布式数据库SequoiaDB介绍.pptx

    - **分库分表**:通过中间件进行SQL拆分,兼容性较好,但性能受限。 - **原生分布式数据库**:SequoiaDB等为代表,数据库内部处理分布式事务,对应用程序透明,提供高性能和强一致性。 5. **SequoiaDB的优势** -...

    mycat权威指南.pdf

    它支持分库分表、读写分离、数据冗余等核心功能,是构建大型分布式数据库系统的关键组件。 在书中,你将了解到Mycat的基本概念,包括其设计理念、架构模式以及与其他数据库中间件的对比。Mycat的核心特性在于它的...

    mysql面试题100题,包含答案和解析.docx

    - 水平与垂直分库分表是两种主要策略,中间件如Sharding-JDBC、Mycat等可辅助实现。 - 分库分表面临事务处理、跨节点查询、数据迁移、ID生成和排序分页等挑战。 5. **InnoDB与MyISAM的区别**: - InnoDB支持事务...

Global site tag (gtag.js) - Google Analytics