- 浏览: 125264 次
- 性别:
- 来自: 杭州
文章分类
最新评论
org.apache.spark.sql.hive.thriftserver.server.UdfLoadUtils
package org.apache.spark.sql.hive.thriftserver.server
import org.apache.spark.SparkFiles
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.expressions.UserDefinedAggregateFunction
import org.apache.spark.sql.types.{DataType, DataTypes}
import scala.collection.mutable.ArrayBuffer
import scala.io.Source
object UdfLoadUtils {
var configArray: Array[String] = getConfigArray
def udfRegister( spark: SparkSession): Unit = {
// name,classname,returnType(udf need)
configArray.foreach(record => {
val registerInfoArray = record.split(",")
println(s"register udf info : $record")
if (registerInfoArray.size == 2) {
val Array(udfName, className) = registerInfoArray
val instance = getUDAFInstanceByClass(className)
spark.sqlContext.udf.register(udfName, instance)
} else if (registerInfoArray.size == 3) {
val Array(udfName, className, returnType) = registerInfoArray
var returnDataType: DataType = null
returnType match {
// Numeric types
case "ByteType" => returnDataType = DataTypes.ByteType
case "ShortType" => returnDataType = DataTypes.ShortType
case "IntegerType" => returnDataType = DataTypes.IntegerType
case "LongType" => returnDataType = DataTypes.LongType
case "FloatType" => returnDataType = DataTypes.FloatType
case "DoubleType" => returnDataType = DataTypes.DoubleType
//case "DecimalType" => returnDataType = DecimalType
// String types
case "StringType" => returnDataType = DataTypes.StringType
// Binary type
case "BinaryType" => returnDataType = DataTypes.BinaryType
// Boolean type
case "BooleanType" => returnDataType = DataTypes.BooleanType
// Datetime type
case "TimestampType" => returnDataType = DataTypes.TimestampType
case "DateType" => returnDataType = DataTypes.DateType
// Complex types
//case "ArrayType" => returnDataType = ArrayType
//case "MapType" => returnDataType = MapType
//case "StructType" => returnDataType = StructType
case _ => None
}
spark.sqlContext.udf.registerJava(udfName, className, returnDataType)
}
})
}
def getUDAFInstanceByClass(className: String): UserDefinedAggregateFunction = {
var instance: UserDefinedAggregateFunction = null
try {
instance = Class.forName(className).newInstance.asInstanceOf[UserDefinedAggregateFunction]
} catch {
case ex: Throwable => {
println(s" instance $className error ,error info : ${ex.getCause} ...................... ")
ex.printStackTrace()
}
}
instance
}
def getConfigArray():Array[String] ={
val configArray = new ArrayBuffer[String]()
try {
println(s"SparkFiles config.properties , path :" + SparkFiles.get("udf.config"))
val source = Source.fromFile(SparkFiles.get("udf.config"))
val sparkFiles = source.getLines().toArray
configArray ++= sparkFiles
println(s"SparkFiles udf.config , path : SparkFiles.get(udf.config) done!")
} catch {
case x: Throwable =>
}
try {
println(s"local config.properties , path : ./udf.config")
val source = Source.fromFile("./udf.config")
val localFiles = source.getLines().toArray
if(configArray.size == 0 ) configArray ++= localFiles
//localFiles.foreach(kv => println(s"localFiles config pop : key ${kv._1} ,value ${kv._2} "))
println(s"local udf.config , path : ./udf.config done!")
} catch {
case x: Throwable =>
}
try {
val path = SparkFiles.getRootDirectory() + "/udf.config"
println(s"SparkFilesroot udf.config , path : ${path}")
val source = Source.fromFile(path)
val sparkFilesroot = source.getLines().toArray
if(configArray.size == 0 ) configArray ++= sparkFilesroot
println(s"sparkFilesroot udf.config , path : ./udf.config done!")
} catch {
case x: Throwable =>
}
configArray.toArray
}
}
org.apache.spark.sql.hive.thriftserver.server.SparkSQLOperationManager
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.hive.thriftserver.server
import java.util.{Map => JMap}
import java.util.concurrent.ConcurrentHashMap
import org.apache.hive.service.cli._
import org.apache.hive.service.cli.operation.{ExecuteStatementOperation, Operation, OperationManager}
import org.apache.hive.service.cli.session.HiveSession
import org.apache.spark.internal.Logging
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.hive.HiveUtils
import org.apache.spark.sql.hive.thriftserver.{ReflectionUtils, SparkExecuteStatementOperation}
/**
* Executes queries using Spark SQL, and maintains a list of handles to active queries.
*/
private[thriftserver] class SparkSQLOperationManager()
extends OperationManager with Logging {
val handleToOperation = ReflectionUtils
.getSuperField[JMap[OperationHandle, Operation]](this, "handleToOperation")
val sessionToActivePool = new ConcurrentHashMap[SessionHandle, String]()
val sessionToContexts = new ConcurrentHashMap[SessionHandle, SQLContext]()
var udfNotInited = true
override def newExecuteStatementOperation(
parentSession: HiveSession,
statement: String,
confOverlay: JMap[String, String],
async: Boolean): ExecuteStatementOperation = synchronized {
val sqlContext = sessionToContexts.get(parentSession.getSessionHandle)
require(sqlContext != null, s"Session handle: ${parentSession.getSessionHandle} has not been" +
s" initialized or had already closed.")
if(udfNotInited) {
UdfLoadUtils.udfRegister(sqlContext.sparkSession)
udfNotInited = false
}
val conf = sqlContext.sessionState.conf
val runInBackground = async && conf.getConf(HiveUtils.HIVE_THRIFT_SERVER_ASYNC)
val operation = new SparkExecuteStatementOperation(parentSession, statement, confOverlay,
runInBackground)(sqlContext, sessionToActivePool)
handleToOperation.put(operation.getHandle, operation)
logDebug(s"Created Operation for $statement with session=$parentSession, " +
s"runInBackground=$runInBackground")
operation
}
}
package org.apache.spark.sql.hive.thriftserver.server
import org.apache.spark.SparkFiles
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.expressions.UserDefinedAggregateFunction
import org.apache.spark.sql.types.{DataType, DataTypes}
import scala.collection.mutable.ArrayBuffer
import scala.io.Source
object UdfLoadUtils {
var configArray: Array[String] = getConfigArray
def udfRegister( spark: SparkSession): Unit = {
// name,classname,returnType(udf need)
configArray.foreach(record => {
val registerInfoArray = record.split(",")
println(s"register udf info : $record")
if (registerInfoArray.size == 2) {
val Array(udfName, className) = registerInfoArray
val instance = getUDAFInstanceByClass(className)
spark.sqlContext.udf.register(udfName, instance)
} else if (registerInfoArray.size == 3) {
val Array(udfName, className, returnType) = registerInfoArray
var returnDataType: DataType = null
returnType match {
// Numeric types
case "ByteType" => returnDataType = DataTypes.ByteType
case "ShortType" => returnDataType = DataTypes.ShortType
case "IntegerType" => returnDataType = DataTypes.IntegerType
case "LongType" => returnDataType = DataTypes.LongType
case "FloatType" => returnDataType = DataTypes.FloatType
case "DoubleType" => returnDataType = DataTypes.DoubleType
//case "DecimalType" => returnDataType = DecimalType
// String types
case "StringType" => returnDataType = DataTypes.StringType
// Binary type
case "BinaryType" => returnDataType = DataTypes.BinaryType
// Boolean type
case "BooleanType" => returnDataType = DataTypes.BooleanType
// Datetime type
case "TimestampType" => returnDataType = DataTypes.TimestampType
case "DateType" => returnDataType = DataTypes.DateType
// Complex types
//case "ArrayType" => returnDataType = ArrayType
//case "MapType" => returnDataType = MapType
//case "StructType" => returnDataType = StructType
case _ => None
}
spark.sqlContext.udf.registerJava(udfName, className, returnDataType)
}
})
}
def getUDAFInstanceByClass(className: String): UserDefinedAggregateFunction = {
var instance: UserDefinedAggregateFunction = null
try {
instance = Class.forName(className).newInstance.asInstanceOf[UserDefinedAggregateFunction]
} catch {
case ex: Throwable => {
println(s" instance $className error ,error info : ${ex.getCause} ...................... ")
ex.printStackTrace()
}
}
instance
}
def getConfigArray():Array[String] ={
val configArray = new ArrayBuffer[String]()
try {
println(s"SparkFiles config.properties , path :" + SparkFiles.get("udf.config"))
val source = Source.fromFile(SparkFiles.get("udf.config"))
val sparkFiles = source.getLines().toArray
configArray ++= sparkFiles
println(s"SparkFiles udf.config , path : SparkFiles.get(udf.config) done!")
} catch {
case x: Throwable =>
}
try {
println(s"local config.properties , path : ./udf.config")
val source = Source.fromFile("./udf.config")
val localFiles = source.getLines().toArray
if(configArray.size == 0 ) configArray ++= localFiles
//localFiles.foreach(kv => println(s"localFiles config pop : key ${kv._1} ,value ${kv._2} "))
println(s"local udf.config , path : ./udf.config done!")
} catch {
case x: Throwable =>
}
try {
val path = SparkFiles.getRootDirectory() + "/udf.config"
println(s"SparkFilesroot udf.config , path : ${path}")
val source = Source.fromFile(path)
val sparkFilesroot = source.getLines().toArray
if(configArray.size == 0 ) configArray ++= sparkFilesroot
println(s"sparkFilesroot udf.config , path : ./udf.config done!")
} catch {
case x: Throwable =>
}
configArray.toArray
}
}
org.apache.spark.sql.hive.thriftserver.server.SparkSQLOperationManager
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.hive.thriftserver.server
import java.util.{Map => JMap}
import java.util.concurrent.ConcurrentHashMap
import org.apache.hive.service.cli._
import org.apache.hive.service.cli.operation.{ExecuteStatementOperation, Operation, OperationManager}
import org.apache.hive.service.cli.session.HiveSession
import org.apache.spark.internal.Logging
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.hive.HiveUtils
import org.apache.spark.sql.hive.thriftserver.{ReflectionUtils, SparkExecuteStatementOperation}
/**
* Executes queries using Spark SQL, and maintains a list of handles to active queries.
*/
private[thriftserver] class SparkSQLOperationManager()
extends OperationManager with Logging {
val handleToOperation = ReflectionUtils
.getSuperField[JMap[OperationHandle, Operation]](this, "handleToOperation")
val sessionToActivePool = new ConcurrentHashMap[SessionHandle, String]()
val sessionToContexts = new ConcurrentHashMap[SessionHandle, SQLContext]()
var udfNotInited = true
override def newExecuteStatementOperation(
parentSession: HiveSession,
statement: String,
confOverlay: JMap[String, String],
async: Boolean): ExecuteStatementOperation = synchronized {
val sqlContext = sessionToContexts.get(parentSession.getSessionHandle)
require(sqlContext != null, s"Session handle: ${parentSession.getSessionHandle} has not been" +
s" initialized or had already closed.")
if(udfNotInited) {
UdfLoadUtils.udfRegister(sqlContext.sparkSession)
udfNotInited = false
}
val conf = sqlContext.sessionState.conf
val runInBackground = async && conf.getConf(HiveUtils.HIVE_THRIFT_SERVER_ASYNC)
val operation = new SparkExecuteStatementOperation(parentSession, statement, confOverlay,
runInBackground)(sqlContext, sessionToActivePool)
handleToOperation.put(operation.getHandle, operation)
logDebug(s"Created Operation for $statement with session=$parentSession, " +
s"runInBackground=$runInBackground")
operation
}
}
发表评论
-
Spark SQL运行 过程 抄的别人的,记录 学习
2018-05-13 23:07 1035抄的别人的,觉得写的特别好 val FILESOURCE ... -
thriftserver log4j.properties 生效
2018-04-09 11:46 452/home/isuhadoop/spark2/sbin/sta ... -
udaf 返回的 子属性
2018-03-20 13:22 444udaf 返回的 子属性 spark.sql(" ... -
spark datasource
2018-03-16 16:36 669DataFrameWriter format val c ... -
如何 map 端 Join。
2018-03-04 19:31 627Hive 中 修改表的 rawDataSize = 1 1 ... -
hive hbase thriftserver run
2018-03-03 15:13 415正确方法 : 0\ 拷贝对应目录到 spark2 jars ... -
scala package
2018-01-25 09:48 533#scala 打包 mvn clean scala:com ... -
SPARK SERVER
2018-01-23 22:15 553sbin/start-thriftserver.sh --dr ... -
driver class
2018-01-21 22:11 525sbin/start-thriftserver.sh -- ... -
spark thrift server 调试
2017-10-20 15:50 867spark-hive-thriftserver 本地调试 ... -
spark SQL conf
2017-10-18 14:36 624org.apache.spark.sql.internal.S ... -
java 死锁 ,内存问题 分析
2017-10-17 10:50 349jstack -l pid /opt/soft/jdk/ ... -
thriftServer proxy
2017-10-16 14:21 943sudo yum install haproxy 257 ... -
hive spark conf
2017-09-26 17:44 1299CREATE TABLE org_userbehavior_a ... -
get day
2017-09-19 08:41 570def timeDayNow() = { var ... -
thriftserver
2017-09-14 19:47 473export SPARK_CONF_DIR=/home/yun ... -
thriftserver dynamicallocation
2017-09-08 14:41 590./sbin/start-thriftserver.sh -- ... -
test code2
2017-09-03 13:45 492package org.test.udf import co ... -
test code
2017-08-24 17:52 290def taskcal(data:Array[(String, ... -
struct streaming SQL udf udaf
2017-08-22 11:50 680spark aggregator class H ...
相关推荐
本设计源码提供了一个基于Scala的Spark Thrift Server。项目包含12731个文件,主要使用Scala、Java、Python、Shell、JavaScript、CSS、HTML、Ruby和C编程语言。文件类型包括3539个Scala源代码文件、1559个Q文件、...
**SparkSQL的分布式执行引擎——Spark ThriftServer详解** SparkSQL是Apache Spark项目的一个核心组件,它提供了对结构化数据的处理能力,使得用户可以使用SQL或者DataFrame/Dataset API进行数据查询和分析。Spark ...
支持mysql8.x,使用utf8mb4编码。
spark-hive-thriftserver_2.11-2.1.spark-hive-thrift
spark-hive_2.11-2.3.0...spark-hive-thriftserver_2.11-2.3.0.jar log4j-2.15.0.jar slf4j-api-1.7.7.jar slf4j-log4j12-1.7.25.jar curator-client-2.4.0.jar curator-framework-2.4.0.jar curator-recipes-2.4.0.jar
spark和hive结合依赖,如何使用请看我博客https://blog.csdn.net/z1987865446/article/details/109372818
它支持Hive SQL语法和Hive Server,这使得从Hive到Spark-SQL的迁移变得更加平滑。 2. **性能提升**:在相同的硬件配置下,Spark引擎相比Hadoop MapReduce展现出显著的性能优势。这是因为Spark采用了内存计算模型,...
Thrift 是一个高性能的跨语言服务开发框架,最初由 Facebook 开发并开源。它通过接口定义语言(IDL)来定义数据类型和服务,使得不同语言之间能够进行高效且可靠的通信。Thrift IDL 文件被编译成多种编程语言的代码...
`goshine` 是一个专为 Apache Spark Thrift Server 设计的 Go 语言客户端库,它使得在 Go 应用程序中与 Spark 进行交互变得更加便捷。Spark Thrift Server 提供了一个 JDBC/ODBC 接口,允许各种编程语言通过标准的 ...
《PyHS2:Python连接Hive与Spark Thrift Server的利器》 PyHS2,一个在Python编程环境中用于连接Hive Server和Spark Thrift Server的客户端库,为开发者提供了便捷的方式来执行HQL(Hive查询语言)并获取数据。这个...
蜜蜂用于R的Hive客户端,它也与Spark的ThriftServer兼容。 与其他此类库不同,Bee不需要运行rJava,客户端JVM或任何其他服务。 Bee通过C ++节俭库与HiveServer交互,从而使客户端依赖性最小化,并且处理速度很快。...
比如,可能需要确保Hue知道如何连接到刚刚配置的Thrift Server,这可能涉及到修改Hue的配置文件,指定Thrift Server的地址和端口。更改完成后,只需重启Hue组件,警告应该就会消除,从而能够正常使用Hue HBase ...
一组用thrift写的Java RPC框架,是两个maven项目,直接可以用,可以传字符串。 方便初学者了解thrift RPC各部分的原理,如果想自己加功能,就要新建XX.thrift文件,定义好接口,用用thrift生成
【 Maven-Thrift-Server:构建Thrift服务的Maven实践】 在软件开发中,Thrift是一种高效的跨语言服务开发框架,由Facebook开发并开源。它允许定义数据类型和服务接口,然后自动生成各种编程语言的代码,使得不同...
- 创建Spring配置文件,如`thrift-server.xml`,配置Thrift服务器实例(通常是`TNonBlockingServer`或`TSimpleServer`)和Thrift服务处理器。 - 使用Spring的`<bean>`标签定义Thrift服务接口的实现,并通过`@...
标题中的“thrift server support db operation and rest protocol”指出,我们正在讨论一个经过修改的Thrift服务器,它扩展了对数据库操作的支持,并且实现了REST协议。这个服务器现在能够处理HTTP请求,内容格式为...
该包可以启动spark的thriftserver。可以解决报错failed load org.apache.spark.sql.hive.thriftserver.HiveThriftServer2的报错。
1.Spark及其生态圈简介.pdf 2.Spark编译与部署(上)--基础环境搭建.pdf 2.Spark编译与部署(下)--Spark编译安装.pdf 2.Spark编译与部署(中)--Hadoop编译安装.pdf 3.Spark编程模型(上)--概念及SparkShell实战....
thrift框架通过vs2013编译好的静态库,然后通过vs2013实现双向通信代码,通信协议利用openssl加密证书的方式来实现,本资源给出了完整的实现代码,证书可以在网上百度一下,看看如何生成客户端和服务端的,然后编译...