随着AI时代的移动技术革新大会开幕邻近,活动现场的知识分享一直备受业界关注,本期主办方采访到了【基于AI的开发实践专场】演讲嘉宾杨帆先生(商汤科技联合创始人、副总裁,EGO北京分会会员),就AI场景的价值体现与落地进行深度剖析。
以下内容是对杨帆先生的部分采访整理。
AI 更大的价值在于跟不同的行业结合
杨帆在计算机视觉技术领域沉浸多年,在微软任职期间,他主要从事计算机视觉、计算机图形学等领域的新技术孵化工作,包括人脸识别、图像物体识别、人像三维重建等;杨帆认为,AI技术并非新事物,但却在过去的两三年集中爆发,其关键原因就在于今天对语音、图像、视频,有了更加信息化的处理技术,在各个环节上具备了更强的技术储备。从技术到落地,AI 技术所实现的这一切,都离不开场景的支持。
AI技术继承了多种基础技术,在面向工业、金融、医疗、家居、自动驾驶、安防、物流、农业等不同应用场景的解决方案,比如AI和医疗的融合应该会体现在智能设备和识别诊断主要两个方面;AI和金融的整合使金融交易和管理更加安全,实现精准营销、大数据征信和普惠金融;AI和安防的融合实现智能监控、安保机器人等应用场景;AI、大数据等这些东西纯谈概念是没有任何意义的,最终都要回归场景,可复用的基础技术和平台工具固然重要,但只有落在应用场景里,我们才知道其明确的价值在哪里。
Q:业界曾出现一种批评的声音,称现在很多公司和开发者其实对于深度学习的运作原理并不清楚,只知道应用,却不知其所以然。
杨帆表示:“学术界有两套观念,一套观念说知其然不知其所以然是离经叛道、是不对的。对于这个观念,杨帆表示认可,其实现在已经有很多团队也投入力量在进行更加前沿、更加基础性的科研,“这样的基础科研能够指导我们将来在正确的方向上走得更远。”但杨帆认为,基础研究与应用科研,二者不可偏废,完整的科学体系和持续的方向性指引非常重要,但是实证科学也非常重要,企业最终还是要以技术落地的结果说话。”
Q:人脸识别大行其道,不免让人对这项技术及其背后的公司产生了许多好奇。
对于这两年非常火的“刷脸”,开始有各种基于人脸验证能力的实用化场景。在互联网信息安全方面,对于账户的盗用能够更好的分析和调查,包括线上的手机端、桌面端、H5,包括定制的摄像头。操作逻辑非常简单,最开始做刷脸的注册,现在刷脸的支付,手机逐渐去进行刷脸的解锁。在对于个人的认证上,也有非常多的价值。人脸识别的技术,可以判断操作手机的是不是真实的人。
有一个活体检测的技术服务,也包括在线下一体机的形态。对身份证的关键信息进行扫描,包括对身份证内部照片的读取和当前采集人之间进行判断。基于人像的身份认证也是一个非常有价值的工作,它是一个特殊的跨行业的解决方案。这个解决方案现在已经从线上到线下开始极大范围地蔓延。
对中国来说,个人公民身份信息的实名制是一个非常重要的诉求,这个诉求能够有效地帮我们在一定程度上解决互联网的安全问题、解决线下的公共安全问题。所有线上的互联网行业应用,到各种线下行业,包括机场、超市、酒店,都会有越来越多的对于个人身份信息核验的强烈需求。
Q:大家都关注识别正确率,在实际场景中正确率是否为最关键因素?
近几年,很多公司在人脸识别技术上投入了大量的研发并取得了亮眼的成绩,其中识别率一直是各家宣传的重点,今年我们能在各类报道中频繁看到各种99%、99.4%、99.8%等。虽然企业这么宣称,但实际背后蕴含的差异是非常大的,它会有非常多影响因素,所以准确率跟行业背景以及前置假设会是一个强相关的关系。而不同的场景下取得的识别准确率很难做类比。
当识别率达到99%以后,人脸识别技术面临的难点主要在于,如何在不同行业场景中深化这项技术。虽然看上去99%的识别率已经很高了,但不同行业场景对于识别率的要求不同,99%可能只是该技术得以使用的入门条件;而安防场景下,照片模糊、有遮挡、角度不佳都给人脸识别带来了更现实的挑战。
“看似同质化很强、很简单的人脸识别,细分的技术场景其实非常复杂,所以脱离场景去谈技术是没有太大意义的,今天能看得到的,包括以安防、手机这样的一些重点行业为代表,对于真正的人脸识别技术的全面深化存在着非常多的挑战,值得我们去攻克。”
Q:那么,怎样判断一个行业是否具有做 AI 场景的价值?在做AI平台化的进程中,遇到过哪些挑战和问题?
01
看需求
首先,需求得是真实的。杨帆举了个具体的例子:有一个家电厂商想通过人脸识别功能,实现“我进去之后这个房间自动调节成 16 度,我母亲进这个房间自动调节成 26 度”。我问他:“如果你和你母亲一块进去怎么办,如果你背着身进去怎么办?”他说这个需求,其实最好的解决办法就是摇控器。
其次,需求得是刚性的。需要考虑用户愿不愿意买单,愿意花多少钱买单?往后更深层次的逻辑链,需要对场景的更深的了解。
02
规模化
今天完成一套解决方案成本很高。人脸识别这样的技术,在不同的场景中技术差异很大。我今天做金融,1:1的认证,错误率做到百万分之一,千万分之一,准确性非常高,在金融场景中非常好用。如果放在安防的场景下,安防要求百万人的黑名单库。而且黑名单库还要有误报,每一次误报有一个出警。
同样是人脸识别,不同场景下关注的技术指标和任务是完全不同的。所以同样一个技术概念,在不同场景下的差异性非常明显。再者技术什么时候成熟需要在特定的需求场景下,离成熟多远要有一个预判力。
03
数据闭环
做AI技术,数据闭环是非常重要的环节。为什么?我们做视频的会发现,当你技术不成熟的时候你的业务不能用,业务没有落地的时候就没有数据。做不好,就形成死循环。这样的死循环如何去打破?原动力的突破来自于技术,当你的技术有小的突破,把其他场景迁移过来。
技术的突破可以带来业务的落地,业务的落地带来数据的累积,数据的累计可以带来技术的进步。这样的数据闭环,帮助整体业务拓展并能带来非常大的价值。今天,数据面临隐私性和安全性的质问和考验。包括区块链在内的很多技术,还有一些非技术的方式方法,可以带来更深层次的探索。
04
商业化
光做出好产品是不够的,还要在市场上真的有价值,并且能持续保有竞争力。任何新技术都会随着时间的推移而扩散,一般所拥有的时间窗口最多也就是一年多的时间。
在这一段时间内,如何看待当前所面临的场景?在这个场景中技术到底占据多大的地位?是非关键性的应用还是关键性的应用?技术上的突破和分配,是否产生根本性的问题?在技术的壁垒期,我们能否利用这一段时间构建起技术以外的壁垒?
只有壁垒构建出来,利用时间窗口期把技术优势转化成其他的竞争性壁垒,这样的行业才值得去做。
05
技术创新驱动
早在一两年前,我们就搜集到大量用假照片和视频去攻击刷脸识别的行为,各种各样的案例。当我们拥有大量来自真实业务的攻击数据时,就能够针对图像视频各种各样的攻击方式进行非常好的防范,这来自于大量线上攻击的业务数据的累积,以及对这些数据的二次挖掘和利用。这个给我们什么样的启示?
做刷脸一开始是做人脸识别,但后来我们发现人脸识别不是最重要的,最重要的活体识别,分清到底是一个真人还是仿冒攻击。只有深入场景,才能发现你所面临的技术挑战跟你之前想象的不同。当行业落地的时候所面临的技术挑战,实际上需要重新定义、分解和解决。
从这五个闭环能够帮助我们去判断,把一个AI技术应用在某一个场景是否真的有价值,是否真的有意义,是否带来更大的用户价值。从这几个角度大家去进行分析判断,会有一个相对比较好的结论。
想把落地场景做好,复合型技术人才尤为重要
如杨帆所说,真正去看行业落地的时候,往往都是不同的技术叠加和组合的应用,这里面人脸识别和动作识别是最关键的技术,但实际上想把落地场景做好,一定需要多种技术组合。
杨帆表示,将创新技术转变为实际产品是一条满是荆棘的道路,行之不易,而其中最大的难点,一是如何选对方向和时机,二是如何找到合适的人才。
行业落地需要各种综合性的关键技术的整合。行业的需求往往是一些相对模糊的,而且从技术上来看是非常不明确的东西,这时候就需要有人有足够的能力去一一拆解。在杨帆看来,找到或培养一些既有技术背景、又对行业有足够深的理解的人才,是企业实现AI技术落地最关键的一点。
他说到,“人才问题、团队组织问题、发展问题,特别是做2B行业,标准化与非标准之间的平衡性掌握,任何一个技术性产品落地会面临的共有问题,做AI技术落地,这些问题一个都不会少,而只会更严重。AI人才是个更大的坑,AI的技术性更深重,从过往来看,它跟行业的结合更弱,所以你想要真正去打磨出一个符合真正行业需求的产品的时候,需要把对行业的理解和对技术的理解融合在一起,这是当前最具挑战任务之一,因为过去可能这个世界上基本不存在这样的人,对行业有理解的人很少。”
视觉AI技术的落地与AI人才的培养是个复杂而庞大的话题,需要对技术和人才都有比较深刻的理解和认知,也是目前业内广泛关注的话题之一。2018年1月5日,在AI时代的移动技术创新大会上,更多重量级大咖,将对AI、移动应用技术、前端开发等内容进行深度的分享,感兴趣的小伙伴可加官V:柚子科技APICloud,免费领取门票。
分享到:
相关推荐
重磅干货:颠覆全球股市汇市商品之如来神掌简史.doc
这是一份极为丰富的学习资料,涵盖了人工智能的基础理论、发展历程、关键技术以及应用实例,旨在帮助读者理解这一领域的核心概念和未来趋势。 人工智能(Artificial Intelligence, AI)是计算机科学的一个分支,它...
有效的质量控制应体现在对不良品的管理和处理上。良好的做法是公开暴露问题,使用可视化工具跟踪不良品,及时分析原因并采取纠正措施。缺乏追溯性和问题解决机制的工厂可能存在品质风险。 关注点五是设备维护和保养...
干货|车外门把手设计指导_new.pdf
我们特意盘点了 2020 年 “智谱・AI” 联合清华大学 - 中国工程院知识智能联合研究中心、清华大学人工智能研究院、北京智源人工智能研究院重磅发布的人工智能技术发展 AI TR 系列报告,为您奉上这份干货满满心意十足...
本文来自作者李文哲,知识图谱是通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、前沿领域以及整体知识...
近日,百度联合清华大学发布国内首个基于AI实践的行业重磅报告,《产业智能化白皮书——人工智能产业化发展地形初现端倪》(以下简称“《白皮书》”)。 本研究聚焦于人工智能产业化发展历程和现状,从产业演进的...
"干货|接地设计指导.pdf" 本文档对应的知识点包括: 1. EMC设计指导:文档中涉及到EMC的设计指导,包括EMC的基本概念、EMC设计的重要性、EMC设计的步骤、EMC设计的工具和方法等。 2. 接地设计:文档中讨论了接地...
Emil van Essen Spread Trading Program 是芝加哥 Emil van Essen 公司旗下的产品,主要通过跨期套利和相对价值交易来获取阿尔法。该产品于 2006 年 12 月成立,直至现在仍是公司的旗舰产品。成立至今累积收益达 。 ...
- 生产力下降可能是因为创新的生产力提升尚未显现,统计方法未能充分捕捉数字经济的价值,或者当前创新对经济的影响不同。 9. 历史加息周期中的资产表现: - 过去的加息周期显示,不同类型的资产在美联储首次加息...
在这个阶段中,我们不得不使用一个工具——用户“画像”标签体系。今天我们就来说说用户画像。本文重点:1.用户画像在数据分析中的应用;2.如何构建用户画像。用户画像(UserPersona)的概念最早由交互设计之父...
人工智能,简称AI,是21世纪科技领域的重要研究方向,涉及机器学习、计算机视觉、自然语言处理、深度学习等多个子领域。清华大学作为中国顶级学府,其在AI领域的研究具有极高的权威性。这份由清华大学教授精心制作的...
【工商银行伦敦大宗商品交易部门揭秘】 工商银行,作为中国最大的国有商业银行,其在2015年宣布计划收购南非标准银行公众有限公司60%的股份,这一举措直指标准银行伦敦的大宗商品交易部门。这一交易旨在利用工商...
在当前的科技浪潮中,人工智能(AI)已成为推动技术进步的关键力量,特别是在计算机视觉和自然语言处理领域。AI技术架构的可行性评估对于决定是否采用AI解决方案至关重要。以下是从标题、描述和部分内容中提取的三个...
综上所述,人工智能AI在金融投资领域的应用正在引发一场深刻变革。从智能投顾到数据分析,再到投资策略的制定,AI不仅带来了效率的提升,也带来了全新的商业模式和投资机会。然而,要成功利用AI,必须克服误区,理解...
前言新能源电控系统比传统车更加复杂,安全要求更高,其中最为人们所关注的要点之一就是功能安全的理念。在这个领域,国际汽车厂商(宝马、通用、福特等)、汽车零部件供应商(博世、德尔福等)早已采用ISO26262标准...