前言
前面讲过使用synchronized关键字来解决“线程安全”问题,其本质是将“并行”执行改“串行”,也就是所谓的“同步”,前面也讲过这种方式的代价较高。在java中还提供一种弱化版的同步机制:volatile变量。
为什么说是弱化版的同步机制呢?首先看下在使用synchronized关键字保证的 (强)同步机制的三个特性说起:原子性、可见性、有序性,也就是说使用synchronized加锁可以同时保证程序执行过程中的原子性、可见性、有序性。
1、原子性:
这个特性更事务处理中的原生性有点类似:单个或多个操作是作为整体一起执行,要么全部执行,要么都不执行。但也有区别:事务里强调的是回滚,而并发编程中强调的是“作为不可拆分的整体执行”。这里提到“单个操作”和“多个操作”。
操作系统中的“单个操作”是原子性的,在java中“单个操作”是原子性操作的有:
除long和double之外的基本类型的赋值操作,比如int i=1;
所有引用类型的赋值操作,比如Object obj=xx;
原子API java.concurrent.Atomic.* 包中的类对应的操作,比如AtomicInteger 的自增操作getAndIncrement;
这里需要注意的是long和double的赋值有可能不是原子性的,它们在java中占8个字节,一个字节8bit,一共就是64个bit。在32位的操作系统中,每次原子赋值只能对32bit进行操作,也就是说在32位的操作系统中对long和double的赋值其实是两个操作。“多个操作”的原子性,只能通过加锁方式来保证。
“多个操作”的原子性,前面已经提到了可以通过synchronized关键字或者Lock(新锁API)加锁来实现。通过串行的方式,保证每次只有一个线程在执行“多个操作”,让同步代码块或同步方法看起来是一个不可分割的整体。
需要注意的是 i++、i--、++i、--i等都不是原子性操作,i++可以拆分为i+1操作和对i重新复制操作。
另外通过new创建对象也不是原子操作,一共有三个操作:分配内存空间;初始化对象;指向该对象的内存地址。
2、可见性:
这是一个相对来说比较难以理解的概念,其它类似文章中的说法是“变量值”在工作内存与主存之间的同步不一致,会导致可见性问题。在这里换一种说法,可能会帮助大家更好的理解。还记得么(详见这里),java的内存结构分为: 方法区、堆区、vm栈、本地方法栈、程序计数器。这里要说的重点是vm栈 、方法区、堆区,所谓“工作内存”其实就是每个线程对应的“vm栈”内存,所谓“主存”可以理解为方法区和堆区。线程、vm栈、方法区、堆区 它们之间的关系如下:
线程1在执行某个方法时,会创建一个vm栈,该方法中使用了一个“方法区”中的静态变量,此时会读取一份方法区中变量值作为副本 放入vm栈内存中。假设现在有另外一个线程2改变了方法区中该静态变量值,在线程1的vm栈中其实存放的还是“旧值”,示意图如下:
(这里只是以静态变量为例,如果是对象的成员变量主存就是堆区)
可以看到线程1中i的值始终是0,线程2中的值是1(主存中的值也变为1),这就出现两个线程中读取同一个变量时,出现不一致现象,这就是java并发编程中的“可见性”问题。
在java中解决可见性问题的方案,有两种:第一种就是前面提到的“加锁”,把并行操作变量i的值 改为“串行”,由于同一时刻只有一个线程在操作主存,所以不存在两个线程看到的值不一致的问题;第二种办法就是对i变量采用volatile关键字修饰,如下:
public volatile static int i=0;
与加锁方式不同的是,volatile关键字只保证“可见性”,而加锁的方式可以同时保证:原子性、可见性、有序性,所以是volatile关键字“弱化版”的同步机制。并且复出的性能代价也比加锁方式小很多,因为此时多线程可以照常“并行”执行。
volatile的核心思想就是,告诉各个线程在读取这个变量时,每次都从主存中读取,从而保证线程中每次获取到的都是最新值,以解决“可见性”问题;而不是只读一次放入vm栈副本中,以后使用时都直接读取副本。对线程执行来说,从vm栈中获取数据的性能肯定比每次都从主存读取性能要好,所以使用volatile关键字也有些许性能损失,但仍能保证多线程并行执行,相对加锁方式来说 性能会有大幅度提高。使用volatile修饰后,i变量在多个线程中的可见性示意图如下:
可以看到,在同一时刻多个线程中看到的i值是相同。但不是所有的情况都可以使用volatile关键字,由于volatile关键字只能保证“可见性”,事实上它只适用少有的几种情况。关于volatile关键字的适用场景放到最后讲。接着看第三个并发问题“有序性”:
3、有序性:
所谓有序性就是代码的执行顺序是从前往后依次执行。我们期望的代码执行顺序是我们编码的顺序,比如在同一个方法中有下列代码:
int i=0;//语句1 int j=0; //语句2 i=i+1; //语句3 j=j+1; //语句4
我们期望的执行顺序是:语句1、语句2、语句3、语句4顺序执行,但在jvm的真实实现中有可能是:语句1、语句3、语句2、语句4。问什么呢jvm要这样实现呢?这又回到“vm栈”的入栈和出栈问题,我们都知道“栈”的数据结构是“先进先出”。
如果按照:语句1、语句2、语句3、语句4顺序执行,首先是变量i入栈-->然后变量i出栈-->变量j入栈-->变量j出栈-->变量i再入栈并执行+1操作-->变量i再出栈-->变量j再入栈并执行+1操作-->变量j出栈。
如果按照:语句1、语句3、语句2、语句4执行,首先变量i入栈-->执行+1操作 出栈-->变量j入栈-->执行+1操作 出栈。可以看到如果采用这种方式,会减少入栈出栈的操作次数,这就是jvm在不影响执行结果的前提下(这里指的单线程),为了优化变量的入栈和出栈,对执行的代码重新排序,也就是所谓的“指令重排”。指令重排的依据是:执行效率最优;执行有依赖关系的必须提前执行,满足这两个条件即可。比如前面语句中必须要先执行语句1,才能执行语句3。
需要注意的是有个限定“不影响执行结果的前提”,这里指的是单线程,在多线程并发执行的情况下可能出现意想不到的结果,比如:
public class Main1 { boolean flag=false; Source source = null; public void getConnect(){ source=getSource();//语句A flag=true;//语句B } public void doSelect(){ if(flag == true){ source.getMsg(); } } }
语句A、B由于没有依赖,可能发生指令重排。
但在单线程下先执行getConnect()方法,再执行doSelect(),程序没有任何问题。
在多线程环境下就不同了,假设线程1执行getConnect()方法;同时线程2执行doSelect()方法,由于语句A、B执行重排,这时可能出现空指针(当然这里也可能是由于“可见性”导致)。
volatile关键字可以一定程度上消除指令重排 即:在volatile变量之前和之后的指令会被分割开,比如下列语句:
int i=0;//语句1 int j=0; //语句2 flag=ture;//flag是volatile变量 i=i+1; //语句3 j=j+1; //语句4
上述语句只可能出现语句1、2重排,语句3、4重排。相当于在volatile变量处建立了一道屏障,这就是所谓的“内存屏障”。
并发编程中的“有序性”问题,指的就是在多线程环境下由于指令重排导致的程序执行的不一致问题(即 线程安全问题)。解决有序性问题,有两种办法:
1、使用synchronized或Lock加锁:前面说过,指令重排在单线程中不会影响执行结果,通过加锁并行改串行,串行本质上就是单线程执行的变体。
2、在某些场景下可以使用volatile变量,使用volatile变量可以一定程度上消除“指令重排”,一定程度上保证“有序性”。
注意两者的区别,加锁本质上没有消除“指令重排”。
再聊volatile
相对于加锁来说volatile是java中轻量版的“同步机制”,主要表现在volatile无法保证多个操作的“原子性”,只能保证“可见性”和防止“指令重排”。典型错误使用volatile场景一:
public class Main1 { volatile int num = 0; public void plus(){ num++;//非原子操作 多线程环境下存在线程安全问题 } public void doSelect(){ num--;//非原子操作 多线程环境下存在线程安全问题 } }
也就是说如果要使用volatile保证线程安全,那volatile修饰的变量必须只进行原子性操作,即修饰的变量只能进行如下操作:
除long和double之外的基本类型的赋值操作,比如int i=1;
所有引用类型的赋值操作,比如Object obj=xx;
原子API java.concurrent.Atomic.* 包中的类对应的操作,比如AtomicInteger 的自增操作getAndIncrement;
另一错误使用volatile场景,就是错误的认为new Object()是原子性操作。还记得双重检查单例模式的实现么,如果new Object()是原子操作的话,多线程下的单例模式是这样:
public class Singleton2 { //注意必须是volatile修饰,保证多线程下数据的可见性 private volatile static Singleton2 singleton2 = null; private Singleton2(){ } public static Singleton2 getInstance(){ if(singleton2 == null){//第一重检查 ingleton2 = new Singleton2(); } return singleton2; } }
这是错误的实现方式,由于new Singleton2()其实包含三个操作,多个操作要保证原子性,只能通过加锁实现,正确的实现方式详见这里,不再累述。
所以volatile相对加锁来说性能虽好,但真实的运用场景却很少,典型场景有两种:第一种就是做开关标记;第二种就是配合加锁实现“双重检查加锁单例模式”。
相关推荐
内容概要:本文详细介绍了欧姆龙NJ系列PLC与多个品牌总线设备(如汇川伺服、雷赛步进控制器、SMC电缸等)的控制程序及其配置方法。重点讨论了PDO映射、参数配置、单位转换、故障排查等方面的实际经验和常见问题。文中提供了具体的代码示例,帮助读者理解和掌握这些复杂系统的调试技巧。此外,还特别强调了不同品牌设备之间的兼容性和注意事项,以及如何避免常见的配置错误。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些需要进行PLC与总线设备集成工作的专业人士。 使用场景及目标:适用于需要将欧姆龙NJ PLC与其他品牌总线设备集成在一起的应用场景,如工厂自动化生产线、机器人控制等。主要目标是提高系统的可靠性和效率,减少调试时间和成本。 其他说明:文章不仅提供了理论知识,还包括大量来自实际项目的实践经验,有助于读者更好地应对现实中的挑战。建议读者在实践中不断积累经验,逐步掌握各种设备的特点和最佳实践。
数字化企业转型大数据解决方案.pptx
内容概要:本文详细介绍了利用MATLAB实现多智能体系统一致性算法在电力系统分布式经济调度中的应用。文中通过具体的MATLAB代码展示了如何将发电机组和柔性负荷视为智能体,通过局部通信和协商达成全局最优调度。核心算法通过迭代更新增量成本和增量效益,使各个节点在无中央指挥的情况下自行调整功率,最终实现经济最优分配。此外,文章还讨论了通信拓扑对收敛速度的影响以及一些工程优化技巧,如稀疏矩阵存储和自适应参数调整。 适合人群:从事电力系统调度、分布式控制系统设计的研究人员和技术人员,尤其是对多智能体系统和MATLAB编程有一定了解的人群。 使用场景及目标:适用于希望提高电力系统调度效率、降低成本并增强系统鲁棒性的应用场景。主要目标是在分布式环境下实现快速、稳定的经济调度,同时减少通信量和计算资源消耗。 其他说明:文章提供了详细的代码示例和测试结果,展示了算法的实际性能和优势。对于进一步研究和实际应用具有重要参考价值。
获取虎牙直播流地址的油猴脚本,可以直接使用VLC等播放器打开地址播放。
内容概要:本文详细介绍了如何利用MATLAB进行价格型需求响应的研究,特别是电价弹性矩阵的构建与优化。文章首先解释了电价弹性矩阵的概念及其重要性,接着展示了如何通过MATLAB代码实现弹性矩阵的初始化、负荷变化量的计算以及优化方法。文中还讨论了如何通过非线性约束和目标函数最小化峰谷差,确保用户用电舒适度的同时实现负荷的有效调节。此外,文章提供了具体的代码实例,包括原始负荷曲线与优化后负荷曲线的对比图,以及基于历史数据的参数优化方法。 适合人群:从事电力系统优化、能源管理及相关领域的研究人员和技术人员。 使用场景及目标:适用于希望深入了解并掌握价格型需求响应机制的专业人士,旨在帮助他们更好地理解和应用电价弹性矩阵,优化电力系统的负荷分布,提高能源利用效率。 其他说明:文章强调了实际应用中的注意事项,如弹性矩阵的动态校准和用户价格敏感度的滞后效应,提供了实用的技术细节和实践经验。
CSP-J 2021 初赛真题.pdf
内容概要:本文详细介绍了如何利用麻雀优化算法(SSA)与长短期记忆网络(LSTM)相结合,在MATLAB环境中构建一个用于时间序列单输入单输出预测的模型。首先简述了SSA和LSTM的基本原理,接着逐步讲解了从数据准备、预处理、模型构建、参数优化到最后的预测与结果可视化的完整流程。文中提供了详细的MATLAB代码示例,确保读者能够轻松复现实验。此外,还讨论了一些关键参数的选择方法及其对模型性能的影响。 适合人群:对时间序列预测感兴趣的科研人员、研究生以及有一定编程基础的数据分析师。 使用场景及目标:适用于需要对单变量时间序列数据进行高精度预测的应用场合,如金融、能源等领域。通过本篇文章的学习,读者将掌握如何使用MATLAB实现SSA优化LSTM模型的具体步骤和技术要点。 其他说明:为了提高模型的泛化能力,文中特别强调了数据预处理的重要性,并给出了具体的实现方式。同时,针对可能出现的问题,如过拟合、梯度爆炸等,也提供了一些建议性的解决方案。
内容概要:本文详细介绍了西门子S7-1200 PLC与施耐德ATV310/312变频器通过Modbus RTU进行通讯的具体实现步骤和调试技巧。主要内容涵盖硬件接线、通讯参数配置、控制启停、设定频率、读取运行参数的方法以及常见的调试问题及其解决方案。文中提供了具体的代码示例,帮助读者理解和实施通讯程序。此外,还强调了注意事项,如地址偏移量、数据格式转换和超时匹配等。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些需要将西门子PLC与施耐德变频器进行集成的工作人员。 使用场景及目标:适用于需要通过Modbus RTU协议实现PLC与变频器通讯的工程项目。目标是确保通讯稳定可靠,掌握解决常见问题的方法,提高调试效率。 其他说明:文中提到的实际案例和调试经验有助于读者避免常见错误,快速定位并解决问题。建议读者在实践中结合提供的代码示例和调试工具进行操作。
本文详细介绍了Scala语言的基础知识和特性。Scala是一种运行在JVM上的编程语言,兼具面向对象和函数式编程的特点,适合大数据处理。其环境配置需注意Java版本和路径问题。语言基础涵盖注释、变量、数据类型、运算符和流程控制。函数特性包括高阶函数、柯里化、闭包、尾递归等。面向对象方面,Scala支持继承、抽象类、特质等,并通过包、类和对象实现代码组织和管理,同时提供了单例对象和伴生对象的概念。
内容概要:本文详细探讨了石墨烯-金属强耦合拉比分裂现象的研究,主要借助Comsol多物理场仿真软件进行模拟。文章首先介绍了拉比分裂的基本概念,即当石墨烯与金属相互靠近时,原本单一的共振模式会分裂成两个,这种现象背后的电磁学和量子力学原理对于开发新型光电器件、高速通信设备等意义重大。接着阐述了Comsol在研究中的重要作用,包括构建石墨烯-金属相互作用模型、设置材料属性、定义边界条件、划分网格以及求解模型的具体步骤。此外,还展示了具体的建模示例代码,并对模拟结果进行了深入分析,解释了拉比分裂现象的形成机理。最后强调了该研究对未来技术创新的重要价值。 适合人群:从事物理学、材料科学、光电工程等领域研究的专业人士,尤其是对石墨烯-金属强耦合感兴趣的科研工作者。 使用场景及目标:适用于希望深入了解石墨烯-金属强耦合拉比分裂现象的研究人员,旨在帮助他们掌握Comsol仿真工具的应用技巧,提高研究效率,推动相关领域的创新发展。 其他说明:文中提供的代码片段和建模思路可供读者参考实践,但需要注意实际应用时需根据具体情况调整参数配置。
内容概要:本文详细介绍了基于FPGA的电机控制系统的设计与实现,重点探讨了Verilog和Nios II软核相结合的方式。具体来说,编码器模块利用Verilog实现了高精度的四倍频计数,解决了AB相信号的跳变问题;坐标变换部分则由Nios II软核负责,通过C语言实现Clarke变换和Park变换,提高了计算效率;SVPWM生成模块采用了Verilog硬件加速,优化了调制波的生成时间和波形质量。此外,文章还讨论了Nios II和Verilog之间的高效交互方式,如自定义指令和DMA传输,以及中断处理机制,确保系统的实时性和稳定性。文中提到的一些优化技巧,如定点数运算、查表法、流水线设计等,进一步提升了系统的性能。 适合人群:具有一定FPGA和嵌入式开发经验的研发人员,尤其是对电机控制感兴趣的工程师。 使用场景及目标:适用于需要高性能、低延迟的电机控制应用场景,如工业自动化、机器人、无人机等领域。目标是帮助读者掌握FPGA与Nios II结合的电机控制方法,提高系统的实时性和可靠性。 其他说明:文章提供了详细的代码片段和优化建议,有助于读者理解和实践。同时,文中提及了一些常见的调试问题及其解决方案,如符号位处理不当导致的电机反转、数据溢出等问题,提醒读者在实际项目中加以注意。
内容概要:本文档《ATK-DLRK3568嵌入式Qt开发实战V1.2》是正点原子出品的一份面向初学者的嵌入式Qt开发指南,主要内容涵盖嵌入式Linux环境下Qt的安装配置、C++基础、Qt基础、多线程编程、网络编程、多媒体开发、数据库操作以及项目实战案例。文档从最简单的“Hello World”程序开始,逐步引导读者熟悉Qt开发环境的搭建、常用控件的使用、信号与槽机制、UI设计、数据处理等关键技术点。此外,文档还提供了详细的项目实战案例,如车牌识别系统的开发,帮助读者将理论知识应用于实际项目中。 适合人群:具备一定Linux和C++基础,希望快速入门嵌入式Qt开发的初学者或有一定开发经验的研发人员。 使用场景及目标: 1. **环境搭建**:学习如何在Ubuntu环境下搭建Qt开发环境,包括安装必要的工具和库。 2. **基础知识**:掌握C++面向对象编程、Qt基础控件的使用、信号与槽机制等核心概念。 3. **高级功能**:理解多线程编程、网络通信、多媒体处理、数据库操作等高级功能的实现方法。 4. **项目实战**:通过具体的项目案例(如车牌识别系统),巩固
内容概要:文章深入探讨了宇树科技人形机器人的技术实力、市场表现及未来前景,揭示其背后是科技创新还是市场炒作。宇树科技,成立于2016年,由90后创业者王兴兴创办,从四足机器人(如Laikago、AlienGo、A1)成功跨越到人形机器人(如H1和G1)。H1具有出色的运动能力和高精度导航技术,G1则专注于娱乐陪伴场景,具备模拟人手操作的能力。市场方面,宇树科技人形机器人因春晚表演而走红,但目前仅限于“极客型”用户购买,二手市场租赁价格高昂。文章认为,宇树科技的成功既源于技术突破,也离不开市场炒作的影响。未来,宇树科技将在工业、服务业、娱乐等多个领域拓展应用,但仍需克服成本、稳定性和安全等方面的挑战。 适合人群:对人工智能和机器人技术感兴趣的科技爱好者、投资者以及相关行业的从业者。 使用场景及目标:①了解宇树科技人形机器人的技术特点和发展历程;②分析其市场表现及未来应用前景;③探讨科技创新与市场炒作之间的关系。 阅读建议:本文详细介绍了宇树科技人形机器人的技术细节和市场情况,读者应关注其技术创新点,同时理性看待市场炒作现象,思考人形机器人的实际应用价值和发展潜力。
C#3-的核心代码以及练习题相关
内容概要:本文详细介绍了一种将麻雀搜索算法(SSA)用于优化支持向量机(SVM)分类的方法,并以红酒数据集为例进行了具体实现。首先介绍了数据预处理步骤,包括从Excel读取数据并进行特征和标签的分离。接着阐述了适应度函数的设计,采用五折交叉验证计算准确率作为评价标准。然后深入探讨了麻雀算法的核心迭代过程,包括参数初始化、种群更新规则以及如何通过指数衰减和随机扰动来提高搜索效率。此外,文中还提到了一些实用技巧,如保存最优参数以避免重复计算、利用混淆矩阵可视化分类结果等。最后给出了完整的代码框架及其在GitHub上的开源地址。 适合人群:具有一定MATLAB编程基础的研究人员和技术爱好者,尤其是对机器学习算法感兴趣的人士。 使用场景及目标:适用于需要解决多分类问题的数据科学家或工程师,旨在提供一种高效且易于使用的SVM参数优化方法,帮助用户获得更高的分类准确性。 其他说明:该方法不仅限于红酒数据集,在其他类似的数据集中同样适用。用户只需确保数据格式正确即可轻松替换数据源。
内容概要:本文详细介绍了如何在MATLAB/Simulink环境中搭建四分之一车被动悬架双质量(二自由度)模型。该模型主要用于研究车辆悬架系统在垂直方向上的动态特性,特别是针对路面不平度引起的车轮和车身振动。文中不仅提供了具体的建模步骤,包括输入模块、模型主体搭建和输出模块的设计,还展示了如何通过仿真分析来评估悬架性能,如乘坐舒适性和轮胎接地性。此外,文章还讨论了一些常见的建模技巧和注意事项,如选择合适的求解器、处理代数环等问题。 适合人群:从事汽车动力学研究的科研人员、高校学生以及对车辆悬架系统感兴趣的工程师。 使用场景及目标:①用于教学目的,帮助学生理解车辆悬架系统的理论知识;②用于科研实验,验证不同的悬架设计方案;③用于工业应用,优化实际车辆的悬架系统设计。 其他说明:本文提供的模型基于MATLAB 2016b及以上版本,确保读者能够顺利重现所有步骤并获得预期结果。同时,文中附带了大量的代码片段和具体的操作指南,便于读者快速上手。
内容概要:本文详细介绍了如何使用COMSOL软件进行光子晶体板谷态特性的建模与仿真。首先,定义了晶格常数和其他关键参数,如六边形蜂窝结构的创建、材料属性的设定以及周期性边界的配置。接下来,重点讲解了网格剖分的方法,强调了自适应网格和边界层细化的重要性。随后,讨论了如何通过参数扫描和频域分析来探索谷态特征,特别是在布里渊区高对称点附近观察到的能量带隙和涡旋结构。最后,提供了关于仿真收敛性和优化技巧的建议,确保结果的可靠性和准确性。 适合人群:从事光子学、电磁学及相关领域的研究人员和技术人员,尤其是对拓扑光子学感兴趣的学者。 使用场景及目标:适用于希望深入了解光子晶体板谷态特性的科研工作者,旨在帮助他们掌握COMSOL的具体应用方法,从而更好地进行相关实验和理论研究。 其他说明:文中不仅提供了详细的代码示例,还穿插了许多形象生动的比喻,使复杂的物理概念变得通俗易懂。同时,强调了仿真过程中需要注意的技术细节,如网格划分、边界条件设置等,有助于避免常见错误并提高仿真的成功率。
内容概要:本文详细介绍了利用有限差分时域法(FDTD)对金纳米球进行米氏散射仿真的全过程。首先,通过Python脚本设置了仿真环境,包括网格精度、材料参数、光源配置等。接着,展示了如何通过近场积分计算散射截面和吸收截面,并进行了远场角分布的仿真。文中还讨论了常见错误及其解决方法,如网格精度不足、边界条件不当等问题。最终,将仿真结果与米氏解析解进行了对比验证,确保了仿真的准确性。 适合人群:从事微纳光学研究的科研人员、研究生以及相关领域的工程师。 使用场景及目标:适用于需要精确模拟纳米颗粒与电磁波相互作用的研究项目,旨在提高仿真精度并验证理论模型。通过本文的学习,可以掌握FDTD仿真的具体实施步骤和技术要点。 其他说明:本文不仅提供了详细的代码示例,还分享了许多实践经验,帮助读者避免常见的仿真陷阱。同时强调了参数选择的重要性,特别是在纳米尺度下,每一个参数都需要精心调整以获得准确的结果。
基数
2ddddddddddddddddddddddddddd