`
猫耳m
  • 浏览: 2487 次
  • 性别: Icon_minigender_2
  • 来自: 北京
最近访客 更多访客>>
文章分类
社区版块
存档分类
最新评论

基于云上分布式NoSQL的海量气象数据存储和查询方案

阅读更多

摘要: 气象数据是一类典型的大数据,具有数据量大、时效性高、数据种类丰富等特点,每天产生的数据量常在几十TB到上百TB的规模,且在爆发性增长。如何存储和高效的查询这些气象数据越来越成为一个难题,本文针对气象领域中海量模式数据的存储和查询问题,分别介绍了传统方案和采用表格存储(TableStore)的方案,并对方案优缺点进行了一些总结。

前言

气象数据是一类典型的大数据,具有数据量大、时效性高、数据种类丰富等特点。气象数据中大量的数据是时空数据,记录了时间和空间范围内各个点的各个物理量的观测量或者模拟量,每天产生的数据量常在几十TB到上百TB的规模,且在爆发性增长。如何存储和高效的查询这些气象数据越来越成为一个难题。

传统的方案常常采用关系型数据库加文件系统的方式实现这类气象数据的存储和实时查询,这种方案在可扩展性、可维护性和性能上都有一些缺陷,随着数据规模的增大缺点越来越明显。最近几年,学界和业界开始不约而同的转向利用分布式NoSQL存储来解决海量气象数据的存储和实时查询问题,相比之前的方案,可以支撑更大规模的数据量并提供更好的查询性能,并且在稳定性、可管理性等方面,也得到了显著的提升。

另一方面,利用云计算的资源来解决气象大数据的解析、存储、查询与分析也成为一种趋势和方向。云上有着丰富的产品服务和弹性的计算资源,可以在云上完成一整套的气象数据处理工作流:利用云上的分布式存储进行气象数据的存储和实时查询,利用大数据计算服务进行气象数据的分析和加工,利用各种应用服务搭建气象平台与应用。

因此,今天越来越多的气象领域科研人员,以及海洋、地震等等领域的科研人员,开始了解云计算,了解分布式存储,并思考如何基于这些服务,进行海量气象数据的存储和查询方案设计。本文会基于表格存储(TableStore, 原OTS)在气象领域的解决方案的探索,介绍如何使用表格存储解决海量气象数据的存储和实时查询难题。

气象数据的特点和查询方式

这一章会介绍一下气象数据(主要是模式数据)的特点,以及几种查询方式,并由此引出为了实现海量气象数据的存储和实时查询,我们需要解决哪些问题。

模式数据

气象数据中非常重要的一部分数据是模式数据,用于数值模式预报。模式数据是由高性能计算机根据地面、高空、卫星等传感器上的实时观测数据通过物理方程计算得出的,产生模式数据的系统是一套庞大的计算系统,一般各个发达国家的气象机构都会有自己的一套模式系统。

模式系统每天会计算几次,每次生成几百个物理量在未来一段时间(比如240小时)的不同海拔高度下的一系列经纬度网格预报数据,网格上的每个点代表这个高度这个经纬度上未来某时刻某个物理量的预报数值。

模式数据具有多维特点

模式数据具有明显的多维特点,以模式系统每次产生的数据为例,包含以下五个维度:

物理量,或者称为要素:温度、湿度、风向、风速等等。
预报时效:未来3小时、6小时、9小时、72小时等等。
高度。
经度。
纬度。
当我们固定某一要素某一预报时效,那么高度、经度、纬度就构成一个三维网格数据,如下图所示(图片来自互联网)。每个格点代表了一个三维空间上的点,上面的数值为该点在某一预报时效(比如未来三小时)下,某一物理量(比如温度)的预报值。

假设一个三维格点空间包含10个不同高度的平面,每个平面为一个2880 x 570的格点,每个格点保存一个4字节数据,那么这三维的数据量为2880 x 570 x 4 x 10, 大约64MB。这仅仅是某个模式系统对某个物理量某一时效下的一次预报,可见模式数据的总量是非常大的。

模式数据的查询方式

预报员会通过页面的形式浏览各种模式数据,并进行数值模式预报。这个页面需要提供多种模式数据的查询方式,比如:

查询一个经纬度平面的格点数据:比如未来三小时全球地面温度的格点数据,或者未来三小时浙江省地面温度数据。
查询某个格点的时间序列数据:比如阿里云公司所在地未来3小时、未来6小时、一直到未来72小时的温度。
查询不同物理量的数据:比如查询某一预报时效、某一高度、某一点的全部物理量的预报数据。
查询不同模式系统产生的数据:比如同时查询欧洲中心的某一模式数据和中国气象机构产生的对应数据等。
查询方式不限于以上几种,本文重点分析前两种较为典型的查询方式,即“查询一个经纬度平面的格点数据”和“查询某个格点的时间序列数据”。

方案要解决哪些问题

首先是存储方面的问题。海量的气象数据必须采用多台服务器进行存储,问题在于如何选择或者构建一个分布式存储系统来保障数据可靠性、可管理性和系统可维护性。

然后是查询的问题。预报员在进行气象预报时,需要快速的浏览大量的气象数据,才能高效准确的进行气象预报。因此,各种查询操作的延迟要很低,必须在毫秒级。上面提到,数据是分布在多台机器之中的,为了实现毫秒级的延迟,必须满足以下两点:

能够根据查询条件,高效的定位到要查询的数据。
定位到数据之后,需要高效的筛选出本次查询所需的数据。比如查询某个点的时间序列数据,需要只筛选出该点的数据。
下面我们来看传统方式和分布式NoSQL方式分别如何解决该问题。

传统的气象数据存储查询方案

由于多维气象数据具有数据量大的特点,所以传统的存储方式是文件系统,而非数据库。在文件系统中,每个维度作为一个目录,形成一个树形的目录结构,数据文件作为树的叶子节点,如下图所示。

上图只是一个示意图,实际存储时数据的层次关系和目录结构设计会因地而异,不同的研究机构会采用不同的目录结构设计。一个需要考虑的问题是,一个数据文件需要控制在多大,即一个数据文件要保存多少维度信息的数据。如果每个文件都很小,文件系统中就会有大量的小文件,导致定位文件的延迟增加,维护这些小文件的负担也较大。如果每个文件都较大,那么就要避免在查询时读取整个文件,导致延迟很高。

下面我们来看这种方案分别如何解决存储和查询问题。对于存储,这种方案会人为的将不同类型的数据划分到不同的服务器上,实现数据的分布式保存,每台机器的目录结构都如上图所示。为了维护某种类型的数据对应哪台机器,常采用关系型数据库进行记录,或者使用配置文件的方式。

对于数据的查询,这种方案常会先从关系型数据库中获取要查询的数据文件所在的机器和文件系统路径,然后访问对应机器上的agent进行查询。这个agent会访问本地文件系统,读取数据文件,并筛选和处理出用户所需的数据。这个agent是必不可少的,其作用是在本地先对数据进行一遍筛选和处理,以减少传输的网络流量。

这里我们可以举一个例子,假设我们要获取某个点在某一高度的未来72小时的时间序列数据,预报时效间隔3小时,那么其实只是获取24个数值。问题在于这24个数值涉及的数据文件可能很大,可能达到几百MB的级别,因为其中的冗余数据太多了,其他的经纬度格点,其他高度的数据我们都是不关心的。本地agent在读取数据时,如果数据采用特定的文件格式,比如NetCDF,可以只读取一个大文件中的一部分,起到优化效果。
这种模式的缺点也很明显:

人为的将不同类型的数据存储在不同机器上,需要解决数据可靠性和可用性的问题,带来很大的维护负担。
数据种类和存储节点的对应关系是确定好的,在新增或者删减数据时需要人为进行调整,可扩展性较差。
为了优化查询性能,必须开发一个agent程序图片描述,启动在存储节点上。这个程序负责从数据文件中筛选出符合条件的一小部分数据,假设数据文件采用NetCDF格式存储,本地agent可以只读取文件中的一部分内容,减少读盘的延迟。这种定制化的方案带来了一些开发维护成本,同时这个agent也难以集成到现有的成熟的分布式存储系统中,即这是一种基于本地文件系统和NetCDF文件格式的特定优化。
使用表格存储进行气象数据存储和查询的方案

表格存储(TableStore)是一款云上的分布式NoSQL数据存储服务,支持高并发的数据读写和PB级别的数据存储能力,提供毫秒级的读取性能。通过上面对传统方案的分析,我们对海量气象数据的存储和查询已经有了一定认识,那么表格存储如何解决其中的问题呢?

首先,表格存储是一种分布式NoSQL存储服务,数据本身会分散到不同的机器上,单集群可以支撑10PB的数据规模,这就解决了存储的问题。

其次,表格存储支持快速的单行查询和范围查询,从数据模型上可以认为是一个巨大的SortedMap。即使表中拥有几百亿、几万亿行数据,单行数据的定位速度并不会下降,这就解决了文件系统在大量小文件时定位慢的问题。

从查询的角度来看,越高效准确的定位到数据,读取以及返回的冗余数据越少,查询效率越高。那么我们可以把表格存储中一行或者一列的数据大小控制在一个恰当的粒度,以此来满足各种查询方式的需求。实践中已经验证,这种方式可以带来非常优秀的性能。下面具体来看存储方案的设计。

存储方案设计

表格存储的数据模型如下图所示,每行数据分为主键和属性列,通过主键来标示一行数据。
下文中的方案重点来讲主键列和属性列如何设计,并且如何实现两种典型的查询方式, 即“查询一个经纬度平面的格点数据”和“查询某个格点的时间序列数据”。

方案一

对于气象中的某种模式数据Data,我们暂且用下面的方式表示:

Data = F(物理量、起报时间、高度、预报时效、经度、纬度)

我们可以把前四个维度作为主键(PrimaryKey,简称PK),后两个维度的数据作为属性列保存,表示为:

Row(物理量、起报时间、高度、预报时效) = F(经度、维度)

PK = (物理量、起报时间、高度、预报时效)
Data = F(经度、维度) = 二维的经纬度格点数据(我们采用binary格式存储在属性列中)
Meta = 一些其他的辅助信息,比如数据是否压缩等等。

那么 Row(PK) = (Data, Meta, 其他属性列), Table = SortedMap(Rows), 如下图所示。

这种方式下,对于查询“一个经纬度平面的格点数据”, 那么只需要把物理量、起报时间、高度、预报时效这些信息拼成主键,然后通过表格存储的GetRow接口读取一行数据即可,如果一次要获取多个经纬度平面的数据,可以通过BatchGetRow接口一次读取多行数据。读取完成后,客户端需要解析出属性列中存储的二进制数据,因为气象数据的压缩率较高,这种方式下推荐对数据进行压缩。

设计这种方案时很重要的考虑因素是,一行存储多大粒度的数据。这里一行只存储一个经纬度平面的数据,以2880 x 570的float数据为例为例,数据量为2880 x 570 x 4=6.3MB数据,压缩后数据量更小。这个粒度对于存储和查询都较为合适,而且气象中大部分查询请求也是读取一个平面。

但是这种方案有一个缺点,对于“查询某个格点的时间序列数据”,必须先读取出一个完整的经纬度格点数据,然后筛选出所需的一个格点。因为获取的冗余数据太多,所以对这个查询场景不能提供很好的性能。由此我们引出方案二。

方案二

为了满足“查询某个格点的时间序列数据”的需求,我们想到通过对数据再切分,来减小数据的粒度,缩小冗余数据的查询和返回。为了缩小数据的粒度,我们把一行中的一个经纬度平面再切分为100个方格,存储在100个属性列中。下图是一个切分的例子,我们把一个481 x 641的平面,切分成很多49 x 65的方格,每个方格的数据保存为一列,列名为Data_x_y, (x, y)是这个方格的左上角坐标。

此时, Row(PK) = (Data_x1_y1, Data_x2_y2, Data_x3_y3, … , Meta)

切分示意图如下:

这种方式下,对于“查询某个格点的时间序列数据”,我们先根据切分方式算出这个格点落在哪个属性列中,然后设置只读取该属性列,然后使用BatchGetRow接口批量读取不同预报时效的数据,即可获取并筛选出“这个格点的时间序列数据”。相比方案一,这里读取的数据量缩小了100倍,性能得到了巨大的提升。
如果读取的不是某个格点,而是读取一部分区域的数据。那么可以先算出这个区域涉及哪些小方格,只读取这些小方格的数据,也可以大量的减少冗余数据的读取。

如果需要读取整个平面,方案一和方案二都可以满足。方案一的好处在于数据放在一起可以获得较好的压缩率,因此业务上可以考虑综合使用方案一和方案二,还是只使用方案二。

方案优缺点

采用表格存储的方案之后,新的查询方式如下图所示:

这种方案的优点可以总结一下:

高可靠和高可用保障,可维护性和可扩展性强。采用成熟的分布式NoSQL系统,相比人为的管理多台服务器的文件系统,可靠性和可用性有巨大提升。可扩展性强,针对不同类型的模式数据,都可以方便的纳入这一系统中来。
弹性的存储和计算资源。使用公共云上的表格存储服务,只需要按量付费,大大的节约了成本,并且可以应对短期的容量或访问高峰。
性能优异,架构简单。实际测试中,上述方案的性能远优于传统方案。同时,传统方案需要在服务端启动一个agent来优化读取性能,在表格存储的方案中已经不再需要开发类似的agent,架构更加简单,分层清晰。
这种方案的缺点在于,气象系统的开发工程师需要对分布式NoSQL较为了解,特别是在进行方案二的实现时,需要对数据进行切分,有一些开发上的复杂度。

作者:亦征

分享到:
评论

相关推荐

    NoSQL技术在气象传感器数据处理中的应用.pdf

    在气象传感器数据处理中,NoSQL技术可以应用于解决海量非结构化数据的存储和处理问题。气象传感器数据的特点是种类繁多、数量庞大且复杂,传统的关系数据库管理系统无法满足工作需求。NoSQL技术可以满足气象传感器...

    基于分布式框架的气象预报服务系统.pdf

    根据提供的文件信息,本文档主要介绍了一种基于分布式框架的气象预报服务系统的构建方法和应用技术。以下是对文档中知识点的详细说明: 1. 气象现代化与服务需求增长:文档指出了随着气象现代化的不断发展,气象...

    气象大数据分布式存储设计与实现.zip

    《气象大数据分布式存储设计与实现》是一份深入探讨如何在气象领域有效管理和处理海量数据的文档。在现代气象科学中,随着传感器网络的发展和遥感技术的进步,我们每天都产生着庞大的气象数据。这些数据包括气温、...

    高性能分布式云数据库

    高性能分布式云数据库是一种能够在云端高效地存储、管理和处理海量数据的数据库系统。它采用了分布式架构,能够跨多个服务器节点运行,并利用先进的算法和技术来确保数据的一致性、可靠性和可用性。相较于传统的...

    气象大数据存储和查询优化[收集].pdf

    Hadoop是基于分布式文件系统(HDFS)的开源框架,能够处理和存储海量数据,而Hbase则是在Hadoop之上构建的非关系型数据库,特别适合于大规模稀疏数据的存储和查询。 Hadoop分布式文件系统(HDFS)的设计目标是高...

    海量监视数据云存储服务模型的设计与实现.docx

    综上所述,海量监视数据云存储服务模型的设计与实现需要考虑数据类型、查询需求、扩展性、一致性、安全性和服务接口等多个方面。通过选择合适的NoSQL技术,优化数据模型和分片策略,以及实施有效的权限控制和服务...

    省级气象大数据存储模型设计.zip

    省级气象大数据存储模型设计是针对气象数据海量、多样化和实时性需求的一种解决方案。在这个领域,数据的处理和存储面临着巨大的挑战,因为气象数据不仅包括历史观测数据,还有来自各种气象卫星、雷达、自动气象站等...

    《hadoop权威指南》第二章的气象数据文件

    在实际应用中,可能会使用HBase这样的NoSQL数据库存储气象数据,以便进行实时查询和分析。HBase是建立在HDFS之上的列族数据库,能够快速访问大量结构化数据。 总的来说,上传的气象数据文件为我们提供了一个实践...

    行业文档-设计装置-大规模分布式气象信息感知平台的运行维护与管理支持分系统.zip

    4. 数据存储与管理:面对海量气象数据,高效的存储和检索策略必不可少。可能涉及大数据技术,如Hadoop、Spark等,以及数据库管理系统,如NoSQL或关系型数据库。 5. 系统监控与运维:为了保证服务的连续性和性能,...

    气象大数据技术架构思路.docx

    - **大数据存储层**:采用分布式存储系统,如Hadoop HDFS,用于存储大规模数据,同时可能结合列式存储和数据仓库技术提高查询效率。 - **大数据分析层**:使用大数据计算框架,如Hadoop MapReduce、Spark等,支持...

    气象大数据云平台的监控系统设计.zip

    综上所述,气象大数据云平台的监控系统设计涵盖了一系列复杂的技术和实践,从大数据处理到云计算服务,从数据采集到实时分析,再到可视化展示和系统安全。理解并掌握这些知识点,对于构建高效、可靠的气象监控系统至...

    41页大数据应用及其解决方案大数据平台数据治理整体解决方案.docx

    - **数据存储**: 采用分布式文件系统、NoSQL数据库等技术存储非结构化和半结构化数据。 - **数据分析**: 应用机器学习、数据挖掘等技术对数据进行深度分析,提取有价值的信息。 - **数据可视化**: 通过图表、仪表盘...

    大数据相关知识、数据集、项目源码及面试习题

    Hive提供了类似SQL的查询语言,使用户能够在Hadoop上进行数据查询和分析;Pig则是一种数据流语言,适用于复杂的批处理任务;Presto是一个高性能的分布式SQL查询引擎,适合于交互式分析。 - **数据流处理**:如Apache...

    国产卫星数据在云计算和大数据平台中的应用.pdf

    云计算平台可以处理海量的国产卫星数据,通过分布式的计算能力快速分析和处理这些数据,提取有用信息,比如图像识别和模式分析等。大数据平台则能够存储和管理这些大量数据,通过高效的数据挖掘和分析技术,挖掘数据...

    大数据与云数据管理.pptx

    - 使用分布式文件系统、NoSQL数据库等技术来存储海量数据。 - **数据处理** - 采用MapReduce、Spark等并行计算框架进行数据处理。 - **数据分析** - 应用机器学习、数据挖掘等技术进行深入分析。 - **数据可视化*...

    Hadoop权威指引---中文版.pdf

    - 数据的爆炸性增长促使了Hadoop的诞生,它提供了对海量数据的存储和分析能力。 - Hadoop与传统的数据处理系统相比,具有分布式、容错性和可扩展性的优势。 - Hadoop的发展历程始于2005年,基于Google的MapReduce...

Global site tag (gtag.js) - Google Analytics