导读:智能化运维的终极目标,就是将运维人员从繁琐的工作中解放出来,提高整体运维效率,降低运维成本,实现业务系统的高可用性。
目前业界真正的智能化运维的落地实践其实并不多,大多还是停留在自动化甚至人工化阶段,然而智能化运维是大势所趋。阿里巴巴又是如何应对的呢?下面请看来自阿里巴巴研发效能团队负责人、阿里研究员毕玄的演讲《智能时代的新运维》。
阿里巴巴运维体系承载的责任
阿里运维体系介绍
阿里的运维团队,主要覆盖五个层面。
一、资源的规划与支付是运维的基石
整个运维团队需要负责资源的规划、资源的交付。
Quota管理:比如我们会跟业务团队做一些预算的管理,对于每个业务团队首先需要有预算。只要你有预算,运维团队一定会把资源交给你,没有预算一切免谈。
规划:比如阿里每年的双十一交易,业务团队要给出下一年的交易额将做到多少,至于背后需要增加多少的机器量,业务团队根本不关心。所以需要运维团队来做从业务需求到资源的转化和规划,这对于公司来讲非常重要,因为意味着最终我在基础设施上要投多少钱,还有节奏的控制。
采购:当规模大了以后,怎么样合理规划资源的数量和交付节奏是非常重要的,比如5月份采购这批机器和6月份采购这批机器,是完全不同的概念。还需要资源的采购,比如SSD采购紧张,供应量不够。通常大公司会有更多的渠道获得更好的供应量,小公司就会很困难。怎么做好供应链控制是非常重要的。
资源调度:对于资源团队来讲,调度也很重要,我们交出去的机器是怎么样的交法,怎么保证可用性、稳定性, Bootstrap等,每个业务都有自己的规划,按照业务需求怎么把整个业务环境全部交给业务方。阿里目前就遇到了很大的挑战,比如在国际化的扩张上,我们可能这个月需要在这里建个点,下个月需要在另一个地方建个点,怎么快速的完成整个资源,不仅仅是机器资源的交付,还有软件资源的交付,是非常重要的。我们现在在扩展东南亚的业务,怎么样在东南亚快速的完成整个软件资源的交付,对于我们的竞争是非常重要的。
二、变更是运维不可避开的坑
对于运维团队来讲,变更也是经常要做的部分,变更信息的收拢,做应用层面的变更,基础网络的IDC等等。
三、监控是预测潜在的故障
监控对于阿里来讲主要分为基础、业务、链路,在监控的基础上要去做一些报警等。
四、稳定性是不少企业追求的目标
稳定性这个概念我们以前认为针对的是大公司,因为它可能会影响到大众的生活,会比较敏感。但是现在新型的互联网公司,如外卖、ofo、摩拜等,它的稳定性要求比以前很多创业型公司更高,因为它有在那个点必须能用,如果不能用,对用户会有直接的影响。所以稳定性可能在整个运维行业会得到越来越高的重视,但是对于很多中小型公司,稳定性的投入是相当大的。
五、一键建站让规模化有力保障
阿里在稳定性上主要会去做多活体系的建设,然后故障的修复、故障定位,还有一套全链路的压测。规模化是很多运维团队很痛苦的事情,可能今年机器在这个机房,明年你的基础设施团队可能告诉你,这个机房不够用了,我们要换个机房。在阿里巴巴很多的运维人员都说了,我们每年的工作中有一项不用写的工作就是搬迁。虽然基础设施团队会承诺说三年内不会再搬,可是到了明年他会跟你说,由于某些原因我们还是再搬一下,搬完之后三年不会让你再搬。但是从我们过去发展的三年,每年都在搬。未来我们确实相信可能搬迁会相对更少一点,我们不能让搬迁成为运维团队的核心竞争力。
我们在规模化层面做了很多事情,比如一键建站,对于阿里来讲,我们对机器资源的交付时间,要求会越来越高。比如说双十一,是提前一个月交付资源,还是提前两个月或者三个月,对我们来讲付出的钱是完全不一样,而且可能相差非常大。
所以,技术层面能不能更好的把这个时间缩短,是非常重要的。所以一键建站的重要目的就是这个。每年双十一我们都会拓展出非常多个站点,通过一键建站快速完成整个过程。搬迁就是我说的,反正我们每年都要搬,那我们应该把搬迁这套系统做得更好。还有腾挪,阿里很多时候因为需要做一些业务资源的复用,最好是有一个机柜,这个时候怎么更好完成腾挪的过程也是很麻烦。
我们还需要做一些单元的调整,因为对阿里的交易系统来讲是有单元的概念的,我们怎么更好的控制一个单元内机器的比率是非常重要的。一个单元的机器数可能是比较固定的,那如果比率搭配不好,就意味着瓶颈点会非常明显。
以上,正是阿里巴巴的运维团队所覆盖的五个领域。
阿里巴巴运维体系的演进
整个运维体系的演进过程,差不多都是从最早的脚本到工具到自动化,到未来的智能化。
从工具化到自动化过关斩将
从工具化到自动化这个层面,过程并没有那么的容易,以及对整个行业来讲,目前更多的工作仍然是在探寻自动化,怎么样让自动化真正的被实现得更好。
这个行业的发展跟其他传统的软件,标准的软件研发行业,我觉得很不一样。比如说阿里从工具化到自动化这个过程中,我们认为工具化,其实挑战相对小,即使传统的运维人员也很容易写一些工具,比如用Python去写更多的工具体系。但是如果你的工具最重要变成能够到自动化这个阶段,就意味着对工具的要求会越来越高,比如说工具的质量,如果你写出来的工具经常有问题,规模一大就扛不住,这会让大家慢慢失去信任感,最后会很难完成这个过程。
运维团队转型研发团队,组织能力是最大的壁垒
阿里过去走这条路的过程中,我们觉得最大的挑战是组织能力问题。运维团队怎么样更好的完成朝研发团队的转型,这个过程对于很多运维团队来讲都是巨大的挑战,对于一个组织来讲怎么完成这个过程也是非常重要的。
我想很多团队都有这个感受,工具研发的团队跟运维操作的团队之间,很容易产生一些冲突。所以阿里巴巴在这个过程中,思考的核心就是怎么让一个运维团队真正从组织能力上,演变成我们所需要的更好的团队。
阿里在走这条路的时候,经历了四个过程。这个过程阿里在不断的摸索,最终到现在为止我们认为阿里的方式相对来讲还是不错的。
我们最早跟大部分公司一样,有一个专职的工具研发团队和一个专职的运维团队。工具研发团队做工具,做出来给运维团队用。这个过程中容易出现的最明显的问题就是工具做完了,运维团队说这个工具太难用了,不符合需求。要么就是运维团队执行的过程中,经常出问题,出问题还要找工具研发团队来帮忙查问题在哪里。本来运维几行脚本全部能搞定的问题,结果还要依赖工具团队。慢慢这个局面越来越难突破,很难改变。
所以阿里后来做了一个尝试,既然两个团队很难做很好的结合,那有一种方式是工具研发团队做完工具以后,比如说做了一个发布,做完这个功能以后,这个运维工作就彻底交给工具研发团队,不让运维团队做了,运维团队就可以做一些别的事情。这个模式看起来就是逐步接管的模式,让工具研发团队逐步解耦。
这个做了一段时间,碰到的最大问题还是组织能力问题。对于运维工具来讲,质量怎么做到很高,运维好像很容易做的样子,但是实际上运维工具相当难做,它的复杂度比在线业务更大,就是它不是逻辑上的复杂,更多的是环境层面的复杂,比如会涉及网络、涉及服务器、涉及机房等,这跟业务完全不一样。所以做了一段时间后,我们觉得这还是一个问题。
将工具的研发和运维融为一体,突破组织能力问题
后面我们做完这轮之后又开始做另外一个方向的尝试,让工具的研发团队和运维团队做一个融合。所谓的融合就是把很多工具研发的人分派给运维团队,到运维团队去做。我们期望通过工具研发的人带动整个运维团队转变成研发型团队。这是我们的思路。
阿里巴巴在走前面这三步的时候,大概花了近一年半左右,意味着这其中我们大概做了三轮组织结构调整。因为我们认为这些都是要有组织层面的保障才能被实现的。
DevOps是如何真正落地的
去年6月,我们做了一个最大的组织结构调整,把日常的运维工作交给研发做,研发自己会把日常的运维工作都做掉,但并不是所有运维工作。现在仍然有一个做运维的团队,这个运维团队跟以前相比有非常大的不同。
我们认为这是DevOps真正的被彻底的执行。因为这个好处是,日常的运维工作交给了研发,运维团队转变成研发团队这个过程非常困难,其实不完全是能力上的差距,更大的原因是,运维团队要承担非常多的日常杂活,尤其像集团性的公司,多数支撑的BU都是无数个。你一个人支撑二十个BU,一个BU里面一天有一个人找你,你一天就不用干别的活了,你一天就在跟他们不断的聊天,做操作,嘴里又叫着这个团队要升级,要做组织升级,要转变成研发团队,实际上就是逼别人走向了一条死路。
所以我们认为,谷歌的做法,谷歌在SRE那本书提到的是,会强制留50%的时间给研发团队做研发工作。这个说实话,在大多数公司很难执行这个政策,除非运维团队跟研发团队有非常强的话语权。但这个很难。所以阿里的做法我认为更为彻底,阿里告诉研发团队,以后日常运维的工作不要找运维团队,自己干。这可能粗暴了一点,在运维体系还没有准备得很好的情况下做了这个事情,所以后面相对来讲也导致了问题,比如说运维工具四处建设、重复建设等等现象。
但是从组织层面上来讲,我们很欣慰的看到,在做完这轮组织调整后的一年,运维团队的大多数人更多的时间是投入在研发工作上,而不是投入在日常的杂事上。我们看到了一个团队的能力,在经过这一轮的调整得到了非常好的升级,而这对于组织来讲是最大的利好。所以我们认为,这种模式是阿里现在最为推崇也最为看好的一个方向,这样整个运维团队将专注在我刚才讲的五个部分的系统层面的研发以及建设上,而不是杂活上。这是阿里从工具化到自动化,最主要是这样的一个过程。
成功率是衡量自动化运维的关键指标
对于自动化来讲最重要的问题是成功率,看所有的运维操作,我们最关心的指标是成功率。
比如一个运维系统里面的功能,在一个星期内,会用几十万次,我们只关注成功率能不能做到4个9以上,否则算一下工单数就懂了,这个运维团队得有多少人支持这件事情,这些人又没有时间去干研发的活,又要投入大量的精力做支持性的工作,所以我们在成功率上要做到非常高的保障。运维系统我们以前看过是面临最大的挑战,我以前的背景全部是做在线业务型的系统,比如淘宝的交易等等。
后来我们发现运维系统有个最大的不同在于,运维系统对于成功率的追求比在线业务型系统更高一些。在线业务型系统,比如说我在访问后面一个地方有问题的时候,我们会选择尽快把这个过程失败掉,而不是把时间不断的拖长以及不断的试错。在线系统会更加快的把错误往外抛。但是对于运维系统来讲如果也这样做,就意味着这个成功率非常难保障。所以运维系统要有更好的思考,怎么保障一次运维操作,这背后可能有几十个系统,而且多数是无数的团队写的,阿里以前碰到的情况就是无数个系统,质量参差不齐,什么都有。怎么保证在这么复杂的环境下,保证对外的,对用户层面这个成功率可以做到很高,这是一个很大的问题。
规模带来的挑战也是不容小觑
随着规模的不断增长,所有开源类型的运维类的系统在规模化,当你的机器规模等其他规模上升到一个程度以后,通常来讲都会面临非常巨大的挑战。阿里巴巴所有的这种类型的系统,我们论证都是自己做是比较靠谱。最大的原因是规模,规模上去以后会遇到很多问题。像代码托管、代码编译什么的,以前认为不会有太大的问题,事实证明规模上来以后这些里面全都是问题,我们也要投入非常大的精力去做规模方面的解决。
所以我觉得,阿里从以前的工具化走向更加自动化的过程中,我们探讨的核心问题就是能不能有一个非常好的组织去完成这个过程。能让运维的团队更加转型向DevOps这样的方向。所以我们一直说,我们一直很纠结运维团队到底应该叫什么名字,我们一致认为,运维研发团队,我们觉得不大对,你的主要的活其实是干研发而不是运维。但是叫研发运维又有点奇怪。后来在阿里巴巴基本上是叫研发团队。因为我们认为运维的研发团队和在线业务的研发团队没有本质区别,都是做研发的,只是一个在解决运维领域的业务问题,刚才讲的五个层次,运维领域的业务问题,也是业务,没有什么区别。在线业务,比如解决交易的问题,解决其他问题,这是完全一样的。两个研发团队没有本质区别。
阿里经过过去这一年的组织调整以后,我们看到整个自动化层面,阿里有了很好的进展,但是离我们的期望,还需要更加努力继续往前演进。
阿里巴巴在智能化领域的探寻之路
现在智能化这个话题特别火热,就像我们说,AI这个名字兴起的时候,我们忽然发现,阿里巴巴所有的业务都讲AI+自己的业务,被所有人狂批一通。我们要想清楚,具不具备AI化的前提。
自动化是智能化的前提
我认为智能化最重要的前提,其中之一是自动化。如果你的系统还没有完成自动化的过程,我认为就不要去做智能化。智能化非常多的要求都是自动化,如果不够自动化,意味着后边看起来做了一个很好的智能化的算法,告诉别人我能给你很大的帮助,结果发现前面自动化过程还没有做完全。
一个最典型的case,阿里巴巴以前一直在讲,我们认为资源的搭配上,其实可以做得更好。比如说你半夜流量比较小,白天流量比较大,你能不能更好的做一些弹性,把资源释放出去干点别的,然后白天再把它补起来。这从算法层面上并没有那么复杂,从算法层面做到一个简单的提升是很容易做的。
所以,当时我们就有很多团队做了一个东西,可以做到这一点,结果等到落地的时候发现,业务不能自动伸缩。如果你想,比如说有些机器上面负载特别高,有些机器特别低,我们希望负载能拉得更均衡,在线业务更加稳定化,做一个算法,比如说背包,更好的去做组合,结果就是这个东西做完了,给出了建议说最好这个应用调到那台机器,那台应用调到这台机器。给完之后业务团队看了一眼,我们不干,因为干这些工作全部要手工干,你还每天给我建议,更不要干了,每天就来调机器了。
所以首先你要想明白你的前提自动化,具不具备自动化的能力,不具备的话没有必要在这方面做过多的投入。
数据结构化是智能化的源动力
目前AI领域基本是靠暴力,暴力破解,未来可能有别的方向,但是目前的AI基本上是靠大量数据的积累去寻找一个东西出来,所以它一定需要有大量的数据积累。数据包括非常多的东西,对于运维来讲,可能基础层面的数据,机器的数据,运维变更的数据,上面还有一些场景化的数据,比如你解决故障,有没有更好的结构化的收集数据,这是非常重要的。数据这个层面比较难做在于最开始阶段,多数公司的运维数据都是不够结构化的,结构化不会做得那么好。
就像阿里巴巴在讲,我们在电商领域AI化,我们最大的优势就是不断对外部讲,我们拥有的是结构化的商品数据,其他公司最多从我们这里扒结构化的商品数据。你扒过去之后还要自己分析,并且做商品结构的调整,这非常困难,但是阿里巴巴会帮你把结构做得非常好。所以对运维来讲也是一样,如果你想在智能化上有更多的突破,数据怎么更好的做结构化,是一个非常大的挑战。这两个地方是首先要想清楚的。
智能化最适合的运维场景
从目前来看,对于运维场景来讲,智能化特别适合解决的问题就两种,对于所有行业好像都差不多,第一是规模。规模就意味着,我有很多的机器,在很多机器中我要寻找出一个机器的问题,这时候对于用传统的方式,将非常难解决这个问题,或者你要投入非常大的人力,有点得不偿失。规模上来以后怎么更好的解决规模的问题,智能化会带来一些帮助。
第二是复杂,比如说你的应用从原来的一个应用变成了几千个、上万个、几十万个,这时候你要寻找出其中哪个应用的问题,将是非常复杂的问题。所以复杂度的问题是人类用人脑非常难推演的,但是机器相对来讲是更容易做的,这是阿里有些团队希望尝试智能化的方向。通常我们会看是不是在前面的这些前提条件上都具备。如果都具备了,那可以去探索一下。所以我讲,阿里其实目前处于整个智能化运维的探索阶段,而不是全面展开阶段。
阿里巴巴智能化运维五步走
简单讲一下目前在智能化这个领域,在运维这五个领域,我们看到的一些可能性,包括我们正在做的事情。
一、资源的重点是成本
1. 基础设施选型
对于资源这一块,整个公司层面最为关注的问题就是成本。你交付的资源具不具备最低的成本,这个智能化确实可以提供非常大的帮助。
比如第一点,怎么更好的规划这家公司机型、网络和整个数据中心?为什么要用智能化的手段在于,一个数据中心的选址来自非常多的因素,除了政府层面的政策因素之外,还有很多其他因素需要考虑,比如说气候等各种各样的因素,都需要在这个阶段考虑。
你需要通过大量数据的积累来分析,比如在中国,在海外,到底有那些地方是对你的业务发展策略来讲最适合的,是在哪里,这要确定一个范围,在一个范围基础上是进一步的人的建立。对于网络、机型来讲,目前我们认为最可以做的在于,可能因为阿里的模式跟有些公司不一样,阿里更多的机器都来自同一个部门,基本上是同一个部门在教阿里巴巴所有的机器。这就有巨大的好处了,因为都在一个团队。比如阿里巴巴在去年开始建设统一的调度系统,更大的好处就来了,因为大家所有的资源都来自同一个地方,这个地方就收集了整个阿里巴巴的所有的资源需求、数据,数据全部在它手上。
如果你结合这个数据,以及它实际的运行情况,就可以更好的去推导。比如说对于阿里巴巴来讲最合适的机型是什么,这个阿里大概在去年就开始做尝试。在去年以前所有的过程,阿里巴巴,比如说明年我的服务器的机型,所谓机型,这里讲的机型的含义主要是比率问题,不是选择下一代什么样的CPU,那是硬件发展决定的。但是比率因素,以前我们更多的是人脑拍,人肉智能。人肉智能在一定阶段是更加高阶的,过了那个阶段之后人就比不过机器了。团队说我们明年要买的机型里面的配置大概是这样的,人算了一下,就这样吧,就可以拍掉。去年开始我们引入了一套系统,这套系统会分析所有的数据以及钱,最重要的是钱,然后分析一下整个过程,推演对我们来说最合算的是什么,适合的机型是什么。
如果有一套非常好的推演的系统,来推演你的机型、网络、IDC未来应该怎么规划,这对于成本领域将会产生巨大的帮助。比如说网络,现在的发展,万兆,25G、45G、100G,你认为对于你的公司来讲最合适的是什么?多数公司八成就是人脑一拍就决定了,但是事实上可能不是这样。
2. DC大脑,让控制更加智能化
DC大脑,这个现在比较火,这个领域现在非常火爆,火爆的主要原因有可能是因为去年谷歌的一篇文章,里面有一个消息透露,他们通过更好的智能化,去控制整个机房的智能等等。比如说控制空调的出口,就是风向往哪边吹,控制这个,然后为谷歌节省了非常多的钱,非常可观。所以对于很多数据中心团队来讲,现在都在研究这个领域。因为这个领域实在太省钱了。
我们后来类比了一下,其实大多数人,很难感受到数据中心,最容易感觉的是一个地方,你的办公室。比如以前阿里巴巴一到夏天的时候,办公室里非常冷,比外面冷多了。如果能够更好的控制温度,对于我们来讲就会有巨大的帮助,对公司会更加省钱。所以怎么样做好这个非常重要。
3. 弹性伸缩最大的前提是实现自动化
弹性伸缩,这是无数运维团队都想做的事情。业务团队说我要一百台机器,你也不好反驳他,最后上线了一百台,你发现他用十台就够了,但是你很难跟他纠结这个问题。好像无数的运维团队都在尝试弹性伸缩。但是弹性伸缩最大的前提就是自动化,如果没有自动化也没有什么意义。
4. 资源画像让资源更好搭配
资源怎么更好的搭配,阿里巴巴在尝试做资源的画像。对于所有在线业务来讲,它的趋势比较好预测,多数在线业务,只有少数的在线业务不大好预测。多数在线业务是一个模式,如果预测得非常好,让资源有合理的搭配,对于这家公司的资源将会产生巨大的帮助。
二、可以下降30%由变更引起的故障
在变更这个领域我们觉得首先是效率问题。阿里巴巴现在大概有几万的研发人员,我们又把运维这个工作交给研发了,那怎么让研发在这个过程中,把变更这件事情做得更有效率和更没有感觉,是阿里巴巴现在追求的一个重点。这个重点我们认为,智能化是可以发挥巨大的帮助的。上面讲的第一个案例是讲的文件分发过程当中的智能的流控。比如一次发布要一个小时,那意味着多数研发是需要去盯一个小时的,他虽然不一定要一直看着,但是到发完之后是要去看一下,这挺耗精力的。
另外一个方向是现在业界很火的无人值守,怎么做到在发布过程中,对于研发来讲最好是无感,我制定了在某天发,只要测试通过了我就可以自动完成这个过程,有问题稍微控制一下就好了,没有问题就当这件事情没发生。这对于有众多研发团队,或者当然,如果你有运维团队在做这件事情,对运维团队来讲就更有帮助了,意味着运维很多人可能就去掉了一大块活。
所以,变更这个领域,我们最希望做的是朝这个方向去发展。目前来看阿里巴巴的尝试,我们可以看到变更引发的故障比率是最高的,目前已经看到这个领域中,可以下降30%因为变更引起的故障,拦截主要是用来拦截问题。
三、监控AI化
智能报警
这个领域现在是AI进入运维行业中最火的领域,所有公司都在做。第一个是阿里在做的。第一个是智能,做运维的都知道,你写完了一个业务,要配监控报警的阈值的,比如说CPU到多少应该报警,然后响应时间到多少应该报警。阿里在尝试的一个方向是让你不要去配,阿里根据分析来决定什么情况下需要报警,这对于研发来讲有巨大的帮助。
异常检测直接影响到效率
第二点是异常检测,这是很多公司都在做的。异常检测之所以要做,最大的原因就是因为效率,如果不做,其实也ok,但是要投入非常大的人力。比如说交易跌了,只要跌了就需要分析到底什么因素。而这个因素很有可能,最后你发现根本跟我们没关系,可能是外部原因,国家节日等等,各种各样的因素造成的。尤其是小规模的业务,比如我们的海外业务,波动非常大,如果一波动就认为是问题,这对于整个公司的效率来讲是巨大的影响。
所以我们认为,如果异常检测做得非常好,对我们的效率会有非常大的帮助。这张图是通常来讲,做异常检测,运维的数据都是时序化,根据时序有各种各样的算法,上面列了业界常用的算法。最左上角的算法是阿里巴巴自己研究的算法,从我们目前的测试情况来看,我们可以看到阿里巴巴自己研究的算法的准确率等等。细节我不讲了,最重要的原因是这个东西马上会在某个会议上发表一篇论文,大家以后会看到。
四、稳定性是以效率为原则,故障修复要精准且快速
稳定性对我们来讲最重要的是效率问题。第一个是故障的修复,故障出现在越大的公司越大的规模越复杂的业务场景中,出现是不可避免的,一定会出现,关键是出现之后怎么尽快把故障修复掉。
故障修复这个领域,阿里巴巴尝试了非常多的方案,也尝试了很多年。很多的案例都是,这个过程需要慢慢的积累,原因在于信任感地当故障出现的时候,我们都说公司的很多团队都处于高度紧张的状态,这个时候有一套系统抛出了,现在多数这种系统都是抛出三个决定,给你三个建议,然后你来选。有时候经验丰富的处理故障的人一看,你抛出的三个建议都不靠谱。当十个故障中,有八次,不用八次,如果有个四五次都是这样的,以后所有人都不会看这套系统了,太不靠谱了,还不如人来判断。这个系统难度非常高,需要整个公司坚定地朝这个方向走,并且更好的积累很多的数据。
故障修复,阿里现在只尝试了一些非常简单的案例,对于阿里来讲,比如一个机房出故障,因为整个阿里巴巴交易体系的架构是支持多点的,对于我们来讲如果在某种情况下,我们判断一个机房出故障,我们可以自动的做一些流量的切换。但阿里现在也认为,智能化在稳定性,尤其故障修复这种动作上,还是要非常小心,万一没事切出了问题,这影响更大。
用智能化做好故障定位
我们以前一直都认为定位这个问题不是个大问题,如果我能快速修复,定位,你慢慢定好了,定个两天我也无所谓。但是现在阿里特别重视的原因在于,故障定位损耗了我们非常多的人力,耗费了我们非常大的团队力量。所以我们认为需要有更智能化的方法,把故障定位出来,以助研发团队更专注投入在其他事情上。比如现在故障一出来,研发查了半天,一看,跟它都没有什么关系,所以就浪费了很多,这张图是我们现在在做的一套系统,从一个异常,那里标一二三四五,当有一个异常出来之后,第一步发现,第二步不断的分析,一直定位到最后到底是哪个地方出了问题,我们的目标是最后尽可能定位到代码层面的问题,或者是网络或者是基础设施等等。
五、边压边弹,做好规模化运维
目前对阿里来讲最重要的问题还是效率问题。比如说我们在每年准备双十一容量的时候,很多人都知道阿里有全链路压测,一个最重要的目的就是调整容量,怎么把一个机房的容量调整成比率是最合适的,比如说A应用可能是瓶颈,但是事实上如果搭配得好,A应用就不再是瓶颈。所以怎么样在一个固定机器数下做一个最好的搭配?我们以前是压一轮调整一下,再压一轮再调整一下,这非常耗费人的精力。我们认为这个过程需要提升,现在改成非常简单的模式,流量过来以后不断的自动调整容量比例,我们会有一个所谓边压边弹,一边压测一边调整比例。相信很多运维同学都干过这个事情,因为业务方给你一个指标,你是要算的,而且很难算的很精准。边压边弹意味着你不需要算得很精准,粗略算一个数就可以了,后面靠这套系统自动给你调平衡。
未来运维领域需要突破的防线
无人化让梦想照进现实
我认为现在运维这个领域中最大的挑战仍然是,能不能真正的走向无人化,整个过程中是完全没有人的。
从目前来看,要做到无人化最重要的是质量问题,质量做得不够好是没有办法无人化的。另外如果出问题了能不能自动修复等等,所以我们认为无人化对运维领域是最大的挑战,能不能把这个落地变成现实,奠定了智能化的基础。如果说智能化所有的动作要人介入,那基本就不用做了。
智能化带来效率上的质变
在智能化这一点上,第一点是有效性的问题,如果这个智能表现得比人的智力还差一些,这个慢慢就没有人相信这个东西了。所以怎么样把有效性提升上来,另外最重要的是要看到智能化给运维领域带来效率上的质变。智能化投入非常大,要做大量的收集做大量的分析。所以最好带来的是质变而不只是量变,如果只是量变可能投入都收不回来。对于所有公司而言,更少的人更低的成本是非常重要的。人最好投入在一些更重要的研发事情上。
PS:12月5日,云效将在北京阿里中心开启线下沙龙,由阿里巴巴技术专家分享阿里巴巴DevOps落地实践经验并提供解决方案。
相关推荐
一分钱引发的系统设计“踩坑”案例 114 阿里毕玄:智能时代,运维工程师在谈什么? 120 中间件 137 阿里 SRE 体系如何支撑 24 小时峰值压力、220+ 个国家“剁手党”? 137 史上最复杂业务场景,逼出阿里高可用三大法宝 ...
3. **阿里毕玄:智能时代,运维工程师在谈什么?** - **行业趋势**:分析了智能运维(AIOps)的兴起背景及其对传统运维模式的影响。 - **角色转变**:探讨了运维工程师在智能化时代的角色定位和发展方向。 - **技能...
阿里巴巴研发效能负责人毕玄在2017CNUTCon全球容器技术大会大会上做了题为《从自动化到智能化的阿里运维体系》的分享,就阿里运维体系,从工具化到自动化,探索智能化,挑战及未来做了深入的分析。
《逆流而上:阿里巴巴技术成长之路》这本书深入剖析了阿里巴巴在信息技术领域的崛起和发展历程,展示了这家中国互联网巨头如何在激烈的市场竞争中凭借技术创新不断突破自我,实现从电商巨头到全球科技领导者的蜕变。...
在IT行业中,MapReduce和HBase是大数据处理领域中的两个重要技术。这篇分享总结涵盖了MapReduce的研究...了解这两个技术的研究现状和实践应用,对于IT专业人士来说至关重要,能帮助他们在大数据时代更好地应对挑战。
在这一部分,我们将会深入探讨Sun JDK 1.6如何处理内存分配、垃圾收集以及其他优化策略,特别关注其在内存管理方面的独特之处。 ### 内存管理概述 内存管理是Java运行时环境的核心功能之一,主要负责对象的创建、...
JAVA内存优化-毕玄[归纳] 本文将详细介绍 Java 虚拟机(JVM)中的内存优化技术,以提高 Java 应用程序的性能和可靠性。 1. Java 虚拟机运行时的数据区 在 JVM 中,有多个数据区,包括堆(Heap)、栈(Stack)、...
阿里巴巴系统软件事业部的负责人毕玄在探讨这一主题时,提到了一系列背景和挑战,以及相应的研究方向。 首先,大数据存储和计算的需求日益增长,这使得拥有大量计算节点(如5000个节点)的企业面临着巨大的资源投入...
OceanBase项目负责人毕玄——集团核心系统资深技术专家放翁——淘宝开放平台项目负责人吴翰清——阿里云集团信息安全中心高级安全专家云铮——数据平台与产品部资深技术专家小马——淘宝UED前端通用平台高级技术专家...
阿里的员工主要分布在P序列,共分为P1到P10这十个级别,其中P5通常为校招起步,P6至P8级别为阿里员工的主力分布,也是占比最大的部分。而P10级别则是业界所谓的“大神”级别,代表人物包括褚霸和毕玄等在内,是业界...
OceanBase项目负责人毕玄——集团核心系统资深技术专家放翁——淘宝开放平台项目负责人吴翰清——阿里云集团信息安全中心高级安全专家云铮——数据平台与产品部资深技术专家小马——淘宝UED前端通用平台高级技术专家...
《Sun JDK 1.6内存管理—调优篇》由毕玄撰写,旨在深入探讨Java虚拟机(JVM)在Sun JDK 1.6版本下的内存管理与优化策略。本文将详细解读该文中的核心知识点,包括GC调优的基本技巧、编写对GC友好的代码方法,以及...