在执行程序时,为了提供性能,处理器和编译器常常会对指令进行重排序,但是不能随意重排序,不是你想怎么排序就怎么排序,它需要满足以下两个条件:
- 在单线程环境下不能改变程序运行的结果;
- 存在数据依赖关系的不允许重排序
如果看过LZ上篇博客的就会知道,其实这两点可以归结于一点:无法通过happens-before原则推导出来的,JMM允许任意的排序。
as-if-serial语义
as-if-serial语义的意思是,所有的操作均可以为了优化而被重排序,但是你必须要保证重排序后执行的结果不能被改变,编译器、runtime、处理器都必须遵守as-if-serial语义。注意as-if-serial只保证单线程环境,多线程环境下无效。
下面我们用一个简单的示例来说明:
int a =1;//Aint b =2;//Bint c = a + b;//C
A、B、C三个操作存在如下关系:A、B不存在数据依赖关系,A和C、B和C存在数据依赖关系,因此在进行重排序的时候,A、B可以随意排序,但是必须位于C的前面,执行顺序可以是A –> B –> C或者B –> A –> C。但是无论是何种执行顺序最终的结果C总是等于3。
as-if-serail语义把单线程程序保护起来了,它可以保证在重排序的前提下程序的最终结果始终都是一致的。
其实对于上段代码,他们存在这样的happen-before关系:
- A happens-before B
- B happens-before C
- A happens-before C
1、2是程序顺序次序规则,3是传递性。但是,不是说通过重排序,B可能会排在A之前执行么,为何还会存在存在A happens-beforeB呢?这里再次申明A happens-before B不是A一定会在B之前执行,而是A的对B可见,但是相对于这个程序A的执行结果不需要对B可见,且他们重排序后不会影响结果,所以JMM不会认为这种重排序非法。
我们需要明白这点:在不改变程序执行结果的前提下,尽可能提高程序的运行效率。
下面我们在看一段有意思的代码:
publicclassRecordExample1{publicstaticvoid main(String[] args){int a =1;int b =2;try{ a =3;//A b =1/0;//B}catch(Exception e){}finally{System.out.println("a = "+ a);}}}
按照重排序的规则,操作A与操作B有可能会进行重排序,如果重排序了,B会抛出异常( / by zero),此时A语句一定会执行不到,那么a还会等于3么?如果按照as-if-serial原则它就改变了程序的结果。其实JVM对异常做了一种特殊的处理,为了保证as-if-serial语义,Java异常处理机制对重排序做了一种特殊的处理:JIT在重排序时会在catch语句中插入错误代偿代码(a = 3),这样做虽然会导致cathc里面的逻辑变得复杂,但是JIT优化原则是:尽可能地优化程序正常运行下的逻辑,哪怕以catch块逻辑变得复杂为代价。
重排序对多线程的影响
在单线程环境下由于as-if-serial语义,重排序无法影响最终的结果,但是对于多线程环境呢?
如下代码(volatile的经典用法):
publicclassRecordExample2{int a =0;boolean flag =false;/** * A线程执行 */publicvoid writer(){ a =1;// 1 flag =true;// 2}/** * B线程执行 */publicvoid read(){if(flag){// 3int i = a + a;// 4}}}
A线程执行writer(),线程B执行read(),线程B在执行时能否读到 a = 1 呢?答案是不一定(注:X86CPU不支持写写重排序,如果是在x86上面操作,这个一定会是a=1,LZ搞了好久都没有测试出来,最后查资料才发现)。
由于操作1 和操作2 之间没有数据依赖性,所以可以进行重排序处理,操作3 和操作4 之间也没有数据依赖性,他们亦可以进行重排序,但是操作3 和操作4 之间存在控制依赖性。假如操作1 和操作2 之间重排序:
按照这种执行顺序线程B肯定读不到线程A设置的a值,在这里多线程的语义就已经被重排序破坏了。
操作3 和操作4 之间也可以重排序,这里就不阐述了。但是他们之间存在一个控制依赖的关系,因为只有操作3 成立操作4 才会执行。当代码中存在控制依赖性时,会影响指令序列的执行的并行度,所以编译器和处理器会采用猜测执行来克服控制依赖对并行度的影响。假如操作3 和操作4重排序了,操作4 先执行,则先会把计算结果临时保存到重排序缓冲中,当操作3 为真时才会将计算结果写入变量i中
通过上面的分析,重排序不会影响单线程环境的执行结果,但是会破坏多线程的执行语义。
http://cmsblogs.com/?p=2116
相关推荐
下面我们用一个简单的示例来说明:A、B、C三个操作存在如下关系:A、B不存在数据依赖关系,A和C、B和C存在数据依赖关系,因此在进行重排序的时候,A、B可以随意
在JSR-133之前的Java内存模型规范中,volatile变量的语义较弱,它们的访问可以自由排序。但在新规范中,volatile变量的语义被加强为具备获取(acquire)和释放(release)的语义。这意味着,对volatile变量的写操作...
在深入理解Java内存模型之前,我们需要先了解并发编程模型的分类,然后掌握Java内存模型的基础知识,理解重排序和顺序一致性,以及volatile关键字的相关知识点。 首先,让我们探讨Java内存模型的基础知识。在并发...
Java内存模型,简称JMM(Java Memory Model),是Java编程语言规范的一部分,它定义了程序中各个线程如何访问和修改共享变量,以及如何确保数据的一致性。深入理解Java内存模型对于编写高效的并发程序至关重要。本文...
这些文档如"Java内存模型.docx"、"Java内存模型2.docx"、"深入Java核心 Java内存分配原理精讲.docx"、"java内存模型.pdf"将深入探讨这些概念,帮助开发者更深入地理解Java内存模型及其在实际编程中的应用。...
Java内存模型,简称JMM(Java Memory Model),是Java编程语言规范的一部分,它定义了线程如何共享和访问内存,以及在多线程环境中如何保证数据一致性。理解JMM对于编写高效、正确且线程安全的Java代码至关重要。 ...
Java内存模型(Java Memory Model,JMM)是Java平台中非常关键的概念,它定义了线程如何共享和访问内存中的数据,以及在多线程环境下如何保证数据的一致性。这本书"深入理解Java内存模型"显然是为了帮助读者深入探讨...
Java 内存模型(Java Memory Model,简称 JMM)是 Java 平台中关于线程如何访问共享变量的一套规则,它定义了线程之间的内存可见性、数据一致性以及指令重排序等关键概念,对于多线程编程和并发性能优化至关重要。...
Java 内存模型的抽象 4 重排序 6 处理器重排序与内存屏障指令 7 happens-before 10 重排序 13 数据依赖性 13 as-if-serial 语义 13 程序顺序规则 15 重排序对多线程的影响 15 顺序一致性 19 数据竞争与顺序...
标题和描述中提及的知识点主要围绕Java内存模型(JMM),JVM内存结构,包括堆栈讲解,以及本机内存管理等内容。以下是对这些知识点的详细阐述: ### Java内存模型(JMM) #### JMM简介 Java内存模型(JMM)是Java虚拟机...
总结来说,Java内存模型中的重排序和内存屏障是处理并发问题的关键工具,它们保证了多线程环境下的数据一致性。理解这两个概念对于编写高效且线程安全的Java代码至关重要。程序员需要知道何时何地使用内存屏障,以...
Java内存模型,简称JMM(Java Memory Model),是Java虚拟机规范中定义的一个抽象概念,它描述了在多线程环境下,如何保证共享数据的正确性。深入理解JMM对于编写高效、线程安全的Java代码至关重要。 首先,我们要...
同时,也会探讨Java内存模型是如何处理内存屏障、重排序以及 Happens-Before 规则等复杂概念。通过阅读《深入理解JAVA内存模型.pdf》和观看38套java高级架构视频教程,你将能更好地理解和应用这些知识,提升你的Java...
Java内存模型(Java Memory Model, JMM)是Java平台中用于规范线程间通信和内存可见性的重要概念,它的目标是确保多线程环境下的正确同步。然而,原始的JMM存在一些严重的缺陷,导致了开发者在理解和实现线程安全时...