`

垃圾收集器与内存分配策略

阅读更多

1、对象已死

 

堆中几乎存放着Java世界中所有的对象实例,垃圾收集器在对堆进行回收前,第一件事情就是要确定这些对象有哪些还“存活”着,哪些已经“死去”(即不可能再被任何途径使用的对象)

 

1.1、引用计数算法

 

给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加1;当引用失效时,计数器值就减1;任何时刻计数器都为0的对象就是不可能再被使用的。——实现简单,判定效率也很高。

 

Java语言中没有选用引用计数算法来管理内存,其中最主要的原因是它很难解决对象之间的相互循环引用的问题。

 

1.2、根搜索算法

 

在主流的商用程序语言中(Java 和 C#),都是使用根搜索算法(GC Roots Tracing)判定对象是否存活的。

 

基本思路:通过一系列的名为“GC Roots”的对象作为起点,从这些节点开始向下搜索,搜索所有走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连(用图论的话来说就是从GC Roots到这个对象不可达)时,则证明此对象是不可用的。

 

在Java语言里,可作为GC Roots的对象包括下面几种:

 

  • 虚拟机栈(栈帧中的本地变量表)中的引用的对象。
  • 方法区中的类静态属性引用的对象。
  • 方法区中的常量引用的对象。
  • 本地方法栈中JNI(即一般说的Native方法)的引用的对象。

 

1.3、引用

 

在JDK1.2之前,Java中的引用的定义很传统:如果reference类型的数据中存储的数值代表的是另外一块内存的起始地址,就称这块内存代表着一个引用。

 

在JDK1.2之后,Java对引用的概念进行了扩充,将引用分为强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Weak Reference)、虚引用(Rhantom Reference)四种,这四种引用强度依次逐渐减弱。

 

  • 强引用是指程序代码之中普遍存在的,类似“Object obj = new Object()”这类的引用,只要强引用还存在,垃圾收集器永远不会回收掉被引用的对象。
  • 软引用用来描述一些还有用,但并非必须的对象。对于软引用关联着的对象,在系统将要发生内存溢出异常之前,将会把这些对象列进回收范围之中并进行第二次回收。如果这次回收还是没有足够的内存,才会抛出内存溢出异常。在JDK1.2之后,提供了SoftReference类来实现软引用。
  • 弱引用也是用来描述非必须对象的,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生之前。当垃圾收集器工作时,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。在JDK1.2之后,提供了WeakReference类来实现弱引用。
  • 虚引用也成为幽灵引用或者幻影引用,它是最弱的一种引用关系。一个对象是否有序引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的就是希望能在这个对象被收集器回收时收到一个系统通知。在JDK1.2之后,提供了一个PhantomReference类来实现虚引用。

 

1.4、生存还是死亡

 

在根搜索算法中不可达的对象,也并非是“非死不可”的,这时候他们暂时处于“缓刑”阶段,要真正宣告一个对象死亡,至少要经历两次标记过程:如果对象在进行根搜索后发现没有与GC Roots相连接的引用链,那它将会被第一次标记并且进行一次删选,筛选的条件时此对象是否有必要执行finalize()方法。当对象没有覆盖finalize()方法,或者finalize()方法已经被虚拟机调用过,虚拟机将这两种情况都视为“没有必要执行”。

 

如果这个对象被判定为有必要执行finalize方法,那么这个对象将会被放置在名为F-Queue的队列中,并在稍后由一条虚拟机自动建立的、低优先级的Finalizer线程去执行。这里所谓的“执行”是指虚拟机会出发这个方法,但并不承诺会等待它运行结束。这样做的原因是,如果一个对象在finalize()方法中执行缓慢,或者发生了死循环(更极端的情况),将很可能会导致F-Queue队列中的其他对象永久处于等待状态,甚至导致整个内存回收系统崩溃。finalize()方法是对象逃脱死亡命运的最后一次机会,稍后GC将对F-Queue中的对象进行第二次小规模的标记,如果对象要在finalize()中成功拯救自己——只要重新与引用链上的任何一个对象建立关联即可,譬如把自己(this关键字)赋值给某个类变量或对象的成员变量,那在第二次标记时它将被移除“即将回收”的集合;如果对象这时候还没有逃脱,那它就真的离死不远了。

 

任何一个对象的finalize()方法都只会被系统自动调用一次,如果对象面临下一次回收,他的finalize()方法不会被再次执行。

 

1.5、回收方法区

 

永久代的垃圾收集主要回收两部分内容:废弃常量和无用的类。回收废弃常量与回收Java堆中的对象非常类似。

 

类需要同时满足下面3个条件才能算是“无用的类”:

 

  • 该类所有的实例都已经被回收,也就是Java堆中不存在该类的任何实例。
  • 加载该类的ClassLoader已经被回收。
  • 该类对应的java.lang.Class对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。

 

2、垃圾收集算法

 

2.1、标记——清除算法

 

最基础的收集算法是“标记—清除”(Mark-Sweep)算法,算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收掉所有被标记的对象。

 

之所以说它是最基础的收集算法,是因为后续的收集算法都是基于这种思路并对其缺点进行改进而得到的。它的主要缺点有两个:一个是效率问题,标记和清除过程效率都不高;另外一个是空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致,当程序在以后的运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前出发另一次垃圾收集动作。



 

2.2、复制算法

 

为了解决效率问题,一种称为“复制”(Copying)的收集算法出现了,它将可用内存按照容量划分为大小相等的两块,每次只使用其中的一块。当这一块内存用完了,就将还存活着的独享复制到另外一块上面,然后再把已经使用过的内存空间一次清理掉。这样使得每次都是对其中的一块进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。只是这种算法的代价是将内存缩小为原来的一半,未免太高了一点。

 



 

 

现在的商业虚拟机都采用复制算法来回收新生代。IBM的专门研究表明,新生代中的对象98%是朝生夕死的,所以并不需要按照1:1的比例来划分内存空间,而是将内存分为一块较大的Eden空间和两块娇小的Survivor空间,每次使用Eden和其中的一块Survivor。当回收时,将Eden和Survivor中还存活着的对象一次性地拷贝到另外一块Survivor空间,最后清理掉Eden和刚才用过的Survivor的空间。HotSpot虚拟机默认Eden和Survivor的大小比例是8:1,即每次新生代中可用内存空间为整个新生代容量的90%,只有10%的内存是会被“浪费”的。当然,98%的对象可回收只是一般场景下的数据,我们没有办法保证每次回收都只有不多于10%的对象存活,当Survivor空间不够用时,需要依赖其他内存(这里指老年代)进行分配担保(Handle Promotion)。

 

2.3、标记—整理算法

 

复制收集算法在对象存活率较高时就要执行较多的复制操作,效率会变低。老年代一般不能直接选用复制算法。

 

根据老年代的特点,有人提出了另外一种“标记—整理”(Mark-Compact)算法,标记过程仍然与“标记—清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界意外的内存。

 



 

 

2.4、分代收集算法

 

当前商业虚拟机的垃圾手机都采用“分代收集”(Genaration Collection)算法,这种算法并没有什么新的思想,只是根据对象的存活周期的不同将内存划分为几块。一般是把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用“标记—清除”或“标记—整理”算法来进行回收。

 

3、垃圾收集器

 

如果说收集算法是内存回收的方法论,垃圾收集器就是内存回收的具体实现。直到现在为止还没有最好的收集器出现,更加没有万能的收集器,所以我们选择的只是对具体应用最合适的收集器。

 

 

 



 

 

3.1、Serial收集器

 

Serial收集器是最基本、历史最悠久的收集器,曾经(在JDK1.3.1之前)是虚拟机新生代的唯一选择。这个收集器是一个单线程的收集器,但它的“单线程”的意义并不仅仅是说明它只会使用一个CPU或一条手机线程去完成垃圾收集工作,更重要的是在它进行垃圾收集时,必须暂停其他所有的工作线程(“Stop The World”),直到它收集结束。

 

到现在为止,它依然是虚拟机运行在Client模式下的默认新生代收集器。它有着由于其他收集起的地方:简单而高效,对于限定单个CPU的环境来说,Serial收集器由于没有现成交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。Serial收集器对于运行在Client模式下的虚拟机来说是一个很好的选择。

 

3.2、ParNew收集器

 

ParNew收集器其实就是Serial收集器的多线程版本,除了使用多条线程进行垃圾手机之外,其余行为包括Serial收集器可用的控制参数、收集算法、Stop The World、对象分配规则、回收策略等都与Serial收集器完全一样,实现上这两种收集器也共用了相当多的代码。

 

 ParNew收集器除了多线程收集之外,其他与Seral收集器相比并没有太多创新之处,但它却是许多运行在Server模式下的虚拟机中首选的新生代收集器,其中又一个与性能无关但很重要的原因是,除了Serial收集器外,目前只有它能与CMS收集器配合工作。

 

3.3、Parallel Scavenge收集器 

 

 Parallel Scavenge收集器也是一个新生代收集器,他也是使用复制算法的收集器,优势并行的多线程收集器。其特点是与其他收集器的关注点不同,CMS等收集器的关注点尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavengen收集器的目标则是达到一个可控制的吞吐量(Throughput)。所谓吞吐量就是CPU用于运行用户代码的时间与与CPU总消耗时间的比值。经常被称为“吞吐量优先”收集器。

 

停顿时间越短就越适合需要与用户交互的程序,良好的响应速度能提升用户的体验;而高吞吐量则可以最高效率地利用CPU时间,尽快地完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。

 

 Parallel Scavengen收集器提供了两个参数用于精确控制吞吐量,分别是控制最大垃圾收集停顿时间的参数及直接设置吞吐量大小的参数。

 

3.4、Serial Old收集器

 

Seril Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用“标记—整理”算法。这个收集器的主要意义也是被Client模式下的虚拟机使用。如果在Server模式下,它主要还有两大用途:一个是在JDK1.5及之前的版本中与Parallel Scavengen收集器单配使用,另一个就是作为CMS收集器的后背预案,在并发收集发生Concurrent Mode Failure的时候使用。

 

3.5、Parallel Old收集器

 

Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记—整理”算法。这个收集器实在JDK1.6中才开始提供的,在此之前,新生代的Parallel Scavenge收集器一直处于比较尴尬的状态。直到Parallel Old收集器出现后,“吞吐量优先”收集器终于有了比较名不其实的应用组合,在注重吞吐量及CPU资源敏感的场合,都可以优先考虑Parallel Scavenge加Parallel Old收集器。

 

 3.6、CMS收集器

 

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。是基于“标记—清除”算法实现的,它的运作过程相对于前面几种收集起来说要更复杂一些,整个过程分为4个步骤,包括:

 

  • 初始标记(CMS initial mark)——需要Stop The World。初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快。
  • 并发标记(CMS concurrent mark)——并发标记阶段就是进行GC Roots Tracing的过程。
  • 重新标记(CMS remark)——需要Stop The World。重新标记阶段则是为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。
  • 并发清除(CMS concurrent sweep)

 

最主要优点:并发收集、低停顿。也被称为并发低停顿收集器(Concurrent Low Pause collector).

 

显著缺点

 

  • CMS收集器对CPU资源非常敏感。——默认启动的回收线程数是(CPU数量 + 3)/4,也就是当CPU在4个以上时,并发回收时垃圾收集线程最多占用不少于25%的CPU资源,并随着CPU数量的增加而下降。
  • CMS收集器无法处理浮动垃圾(Floating Garbage),可能出现“Concurrent Mode Failure”失败而导致领一次Full GC的产生。
  • 收集结束时会产生大量空间碎片。

 

3.7、G1收集器

 

G1(Garbage First)收集器是当前收集器技术发展的最前沿成果。与CMS收集器相比有两个显著的改进:以使G1收集器是基于“标记—整理”算法实现的收集器,也就是说它不会产生空间碎片,这对于长时间运行的应用系统来说非常重要。二是它可以非常精确地控制停顿,既能让使用者明确指定在一个长度为M毫秒的时间片段内,消耗在垃圾回收上的时间不得超过N毫秒。

 

G1收集器可以实现在基本不牺牲吞吐量的前提下完成低停顿的内存回收,这是由于他能够极力地避免全区域的垃圾收集,之前的收集器进行收集的范围都是整个新生代或者老年代,而G1将整个Java堆划分为多个大小固定的独立区域(Region),并且跟踪这些区域里面的垃圾堆积程度,在后台维护一个优先列表,每次根据允许的收集时间,优先回收垃圾最多的区域(这就是Garbage First名称的由来)。区域划分及有优先级的区域回收,保证了G1收集器在有限的时间内可以获得最高的收集效率。

 

3.8、垃圾收集器参数总结

 



 

 

4、内存分配与回收策略

 

Java技术体系中所提倡的自动内存管理最终可以归结为自动化地解决了两个问题:给对象分配内存以及回收分配给对象的内存。

 

对象的内存分配,往大方向上讲,就是在堆上分配(但也可能经过JIT编译后背拆散为标量类型并间接地在栈上分配),对象主要分配在新生代的Eden区上,如果启动了本地线程分配缓冲,将按线程优先在TLAB上分配。上述情况下也可能会直接分配在老年代中,分配的规则并不是百分之百固定的,其细节取决于当前使用的是哪一种垃圾收集器组合,还有虚拟机中与内存相关的参数的设置。

 

接下来我们将会讲解几条最普遍的内存分配规则。

 

4.1、对象优先在Eden分配

 

大多数情况下,对象在新生代Eden区分配。当Eden区没有足够的空间进行分配时,虚拟机将发起一次Minor GC。

 

  • 新生代GC(Minor GC):指发生在新生代的垃圾收集动作,因为Java对象大多都具备朝生夕灭的特性,所以Minor GC非常频繁,一般回収速度也比较快。
  • 老年代GC(Major GC/Full GC):指发生在老年代的GC,出现了Major GC,经常会伴随至少一次的Minor GC(但非绝对的,在ParallelScavenge收集器的收集策略里就有直接进行Major GC的策略选择过程)。MajorGC的速度一般会比Minor GC慢10倍以上。

 

4.2、大对象直接进入老年代

 

所谓大对象就是指,需要大量连续内存空间的Java对象,最典型的大对象就是那种很长的字符串数组。虚拟机提供了一个 -XX:PretenureSizeThreshold参数,令大于这个设置值的对象直接在老年代中分配。这样做的目的是避免在Eden区及两个Survivor区之间发生大量地内存拷贝。ps:PretenureSizeThreshold参数只对 Serial 和 ParNew 两款收集器有效。

 

4.3、长期存活的对象将进入老年代

 

虚拟机给每个对象定义了一个对象年龄(Age)计数器。如果对象在Eden出生并经过第一次Minor GC后任然存活,并且能被Survivor容纳的话,将被移动到Survivor空间中,并将对象年龄设为1。对象在Survivor区中每熬过一次Minor GC,年龄就增加1岁,当它的年龄增加到一定程度(默认为15岁)时,就会被晋升到老年代中。对象晋升老年代的年龄阈值,可以 通过参数 -XX:MaxTenuringThreshold来设置。

 

4.4、动态对象年龄判定

 

 为了更好地适应不同程序的内存状况,虚拟机并不总是要求对象年龄必须达到MaxTenuringThreshold才能晋升老年代,如果在Survivor空间中相同年龄所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代,无须等到MaxTenuringThreshold中要求的年龄。

 

4.5、空间分配担保

 

在发生Micro GC时,虚拟机会检测之前每次晋升到老年代的平均大小是否大于老年代的剩余空间大小,如果大于,则改为直接进行一次Full GC。如果小于,则查看 HandlePromotionFailure 设置是否允许担保失败;如果允许,那只会进行Minor GC;如果不允许,则也要改为进行一次 Full GC。

 

 

  • 大小: 41.7 KB
  • 大小: 57.4 KB
  • 大小: 59.9 KB
  • 大小: 46.6 KB
  • 大小: 119.2 KB
分享到:
评论

相关推荐

    COMSOL中基于波束包络法的三维弯曲光纤波导传输仿真及损耗分析

    内容概要:本文详细介绍了利用COMSOL进行三维弯曲光纤波导传输仿真的方法和技术要点。首先探讨了几何建模的关键步骤,如使用参数化螺旋线创建弯曲结构,并强调了避免端口模式失配和平滑过渡的重要性。接着讨论了材料设置中的注意事项,尤其是处理各向异性材料时自定义坐标系的应用。文中还深入讲解了波束包络法的核心思想及其相对于传统有限元法的优势,特别是在内存占用方面。此外,提供了具体的求解技巧,包括开启渐进扫描功能以及调整数值耗散参数来提高收敛性。对于后处理部分,则着重介绍了如何通过线积分计算弯曲损耗,并展示了通过脚本自动化生成模场分布动画的方法。最后比较了波束包络法与FDTD方法在不同情况下的表现差异。 适用人群:从事光通信系统设计、光纤器件研究的专业技术人员,以及对电磁场仿真感兴趣的科研工作者。 使用场景及目标:适用于需要精确评估光纤弯曲引起的各种效应的研究项目,如数据中心内部布线优化、新型光纤设计等。主要目标是帮助用户掌握高效准确地进行复杂三维弯曲波导仿真的技能,从而更好地理解和预测实际应用中的性能指标。 其他说明:文中不仅提供了详细的理论解释和技术指导,还附带了许多实用的操作提示和代码片段,便于读者快速上手实践。同时提醒读者注意一些常见的错误来源,如材料色散设置不当可能导致的结果偏差等问题。

    ffmepg windows 下载详细教程2025年(最新)

    ffmepg windows 下载详细教程2025年(最新)

    蓝天白云简约儿童教学课件PPT模板.pptx

    蓝天白云简约儿童教学课件PPT模板

    COMSOL直流电弧放电模型:基于磁流体方程的多物理场耦合仿真与优化

    内容概要:本文详细介绍了如何在COMSOL中构建直流电弧放电模型,利用磁流体动力学(MHD)方程将温度场、流体场和电磁场进行耦合仿真。文章首先解释了如何通过洛伦兹力将电磁场和流体场耦合,接着讨论了温度场中材料参数(如电导率)随温度变化的处理方法。文中还探讨了求解策略,包括分步计算和参数化扫描,以及如何设置边界条件和网格划分。最后,作者分享了一些实用技巧,如调整阻尼因子和使用特定的湍流模型,确保计算结果的准确性。 适合人群:从事等离子体物理、电磁场仿真、流体力学等领域研究的专业人士和技术爱好者。 使用场景及目标:适用于需要精确模拟直流电弧放电行为的研究项目,帮助研究人员理解电弧内部复杂的物理机制,优化电弧设备的设计和性能。 其他说明:文章提供了大量具体的代码片段和配置细节,有助于读者快速上手并解决常见问题。此外,作者还分享了许多实践经验,使读者能够更好地应对仿真过程中可能出现的各种挑战。

    2000-2017年各省城市液化石油气供气总量数据

    2000-2017年各省城市液化石油气供气总量数据 1、时间:2000-2017年 2、来源:国家统计j、能源nj 3、指标:行政区划代码、城市、年份、城市液化石油气供气总量 4、范围:31省

    C# 3C运动控制框架:适用于半导体和新能源行业的稳定运动控制系统

    内容概要:本文详细介绍了基于C#开发的3C运动控制框架,该框架已在半导体和新能源行业中稳定运行五年。框架特点包括三级权限管理系统、灵活的轴配置与控制方式、多种硬件兼容性(如EtherCAT、研华控制卡)、模块化窗体设计以及MES系统的无缝对接。文中展示了具体的代码实现,如权限验证、轴控制、硬件驱动接口、快捷键处理、数据库操作等。此外,还提到了一些实用的设计技巧,如工厂模式、策略模式、状态模式的应用,确保系统的灵活性和扩展性。 适合人群:具备一定C#编程基础,对工业自动化、运动控制感兴趣的开发者和技术人员。 使用场景及目标:① 半导体和新能源生产线的运动控制;② 快速搭建稳定的运动控制系统;③ 实现高效、安全的权限管理和硬件控制;④ 提供模块化设计以便于后续维护和功能扩展。 其他说明:该框架提供了完整的源码和数据库备份,可以直接用于实际项目部署。同时,文中提到的一些设计思路和编码技巧对于提高系统的稳定性和易用性非常有帮助。

    D02基于51单片机的篮球比赛计时器(二)

    基于CWT-CNN-SVM的滚动轴承故障诊断Matlab实现及优化技巧

    内容概要:本文详细介绍了如何使用连续小波变换(CWT)、卷积神经网络(CNN)和支持向量机(SVM)进行滚动轴承故障诊断的方法。首先,通过对东南大学提供的轴承数据集进行预处理,将一维振动信号转换为时频图。然后,构建了一个CNN-SVM混合模型,其中CNN用于提取时频图的特征,SVM用于分类。文中还讨论了如何选择合适的小波基、尺度范围以及如何防止过拟合等问题。此外,作者提供了T-SNE可视化工具来评估模型性能,并分享了一些实用的避坑指南。 适合人群:从事机械设备故障诊断的研究人员和技术人员,尤其是那些对振动信号处理有一定了解的人。 使用场景及目标:适用于工业环境中对旋转机械设备的故障检测和预测。主要目标是提高故障诊断的准确性,减少误判率,确保设备的安全稳定运行。 其他说明:文中提到的所有代码均已在Matlab环境下验证通过,并附有详细的注释和解释。对于初学者来说,建议逐步跟随代码实现,理解每一步骤背后的原理。

    电力系统中基于改进粒子群算法的配电网动态多目标重构模型及其Matlab实现

    内容概要:本文探讨了配电网动态多目标重构问题,旨在通过改变网络中开关的状态来优化网络结构,从而降低网损、改善电压质量和减少开关动作次数。文中采用了改进粒子群算法(PSO),并在Matlab中实现了该算法。改进之处在于加入了随机因素和自适应参数,使粒子能够更好地跳出局部最优,更全面地搜索解空间。此外,文章详细介绍了如何处理孤岛和环网约束,确保网络拓扑的合法性和稳定性。通过IEEE33节点网络的实际案例,展示了该方法的有效性和优越性。 适合人群:从事电力系统研究、配电网优化以及智能算法应用的相关研究人员和技术人员。 使用场景及目标:适用于需要优化配电网结构、提高电力传输效率和稳定性的场合。主要目标是在满足多种约束条件下,找到开关动作次数、电压偏差和网损的最佳平衡解。 其他说明:文章不仅提供了理论分析,还包括具体的Matlab代码实现,便于读者理解和实践。同时,强调了严格的约束处理方法,如DFS和并查集的应用,确保解决方案的可靠性和实用性。

    FPGA上基于VHDL的非IP核可配置点数FFT实现及其应用

    内容概要:本文详细介绍了在FPGA上实现非IP核、可配置点数的快速傅立叶变换(FFT)的方法。该方法采用16位定点数作为输入,32位定点数作为输出,在内部使用浮点数进行高精度计算。整个设计分为三个主要阶段:定点转浮点预处理、浮点运算核以及浮点转定点后处理。文中特别强调了蝶形运算单元的设计、存储器的乒乓操作、地址生成机制和状态机控制等方面的技术细节。此外,还讨论了如何通过调整参数N来自由选择不同的FFT点数,并提供了具体的测试案例和性能评估。 适合人群:熟悉VHDL编程语言并有一定FPGA开发经验的研发人员。 使用场景及目标:适用于需要高效、灵活地实现各种长度FFT的应用场合,如通信系统、音频处理等领域。通过本项目的实践,读者能够掌握不依赖于IP核的手动FFT实现方式,提高对底层硬件的理解和技术能力。 其他说明:文中提供的代码片段展示了关键步骤的具体实现,对于希望深入了解FFT算法及其在FPGA平台上的优化实现的研究者来说非常有价值。同时,作者分享了一些实用的小技巧,比如利用CORDIC算法优化旋转因子计算等,有助于进一步降低资源消耗并提升性能。

    基于欧姆龙PLC与MCGS的热转印工艺瓶子印花机控制系统设计与实现

    内容概要:本文详细介绍了利用欧姆龙PLC(CP1H系列)和MCGS触摸屏实现的热转印工艺瓶子印花机控制系统。系统通过PLC进行精确的伺服电机控制和温度调节,确保瓶子印花的质量和效率。文中具体讲解了PLC的I/O配置、PID温度控制、伺服电机的脉冲控制、MCGS的人机交互界面设计及其脚本编程,以及仿真测试过程中遇到的问题及解决方案。此外,还讨论了硬件选型、通信协议的选择、异常处理机制等方面的内容。 适合人群:从事工业自动化领域的工程师和技术人员,特别是对PLC编程、热转印工艺、MCGS触摸屏编程感兴趣的读者。 使用场景及目标:适用于需要高精度控制的热转印工艺设备的设计与调试。主要目标是提高生产效率和产品质量,减少设备故障率,缩短调试时间。 其他说明:文章提供了大量实际操作经验和代码示例,帮助读者更好地理解和掌握相关技术和应用场景。同时,强调了仿真测试的重要性,展示了如何通过仿真工具提前发现问题并优化系统性能。

    【Python编程】Word文档格式转换脚本:实现.doc到.docx批量转换与处理

    内容概要:本文提供了一个详细且可直接运行的 Python 脚本,用于将 Word 文档 (.doc) 转换为 (.docx) 格式。该脚本不仅实现了基本的文件转换功能,还包含了错误处理、日志记录和进度显示功能,确保转换过程的稳定性和透明度。它能够自动识别输入是单个文件还是文件夹,并保持原始目录结构,同时自动创建不存在的输出目录。此外,脚本支持所有 Word 2007+ 版本,兼容长路径文件名,处理隐藏文件和系统文件。 适合人群:适用于需要批量处理 Word 文档格式转换的用户,特别是那些对自动化脚本有一定了解的技术人员。 使用场景及目标:① 需要将大量 .doc 文件转换为 .docx 格式的办公环境;② 需要保留文件目录结构并确保转换过程有详细日志记录的场景;③ 需要处理包含特殊字符路径、大文件或嵌套多层目录结构的复杂情况。 其他说明:需要注意的是,该脚本必须在 Windows 系统上运行,并且需要安装 Microsoft Word。首次运行时可能会弹出 Word 许可证验证窗口。对于权限问题、文件占用问题以及格式丢失问题,文中也提供了相应的解决方案。脚本经过严格测试,能够处理多种特殊情况,如包含中文/特殊字符的路径、文件大小超过 100MB 的文档等。

    PP01_Z-ONE_ARXML_IPD_V2.1.arxml

    PP01_Z-ONE_ARXML_IPD_V2.1.arxml

    用OpenGL开发的机械臂运动仿真程序,并且实现机械手臂向四个方向的旋转.rar

    OpenGL是一种强大的图形库,用于创建2D和3D图形,广泛应用于游戏开发、科学可视化、工程设计等领域。在这个项目中,我们看到一个基于OpenGL的机械臂运动仿真程序,它能够实现机械臂在四个方向上的旋转。这样的模拟对于理解机械臂的工作原理、机器人控制算法以及进行虚拟环境中的机械臂运动测试具有重要意义。 我们需要了解OpenGL的基础知识。OpenGL是一个跨语言、跨平台的编程接口,用于渲染2D和3D矢量图形。它提供了大量的函数来处理图形的绘制,包括几何形状的定义、颜色设置、光照处理、纹理映射等。开发者通过OpenGL库调用这些函数,构建出复杂的图形场景。 在这个机械臂仿真程序中,C#被用来作为编程语言。C#通常与Windows平台上的.NET Framework配合使用,提供了一种面向对象的、类型安全的语言,支持现代编程特性如LINQ、异步编程等。结合OpenGL,C#可以构建高性能的图形应用。 机械臂的运动仿真涉及到几个关键的计算和控制概念: 1. **关节角度**:机械臂的每个部分(或关节)都有一个或多个自由度,表示为关节角度。这些角度决定了机械臂各部分的位置和方向。 2. **正向运动学**:根据关节角度计算机械臂末端执行器(如抓手)在空间中的位置和方向。这涉及将各个关节的角度转换为欧拉角或四元数,然后转化为笛卡尔坐标系的X、Y、Z位置和旋转。 3. **反向运动学**:给定末端执行器的目标位置和方向,计算出各关节所需的理想角度。这是一个逆向问题,通常需要解决非线性方程组。 4. **运动规划**:确定从当前状态到目标状态的路径,确保机械臂在运动过程中避免碰撞和其他约束。 5. **OpenGL的使用**:在OpenGL中,我们首先创建几何模型来表示机械臂的各个部分。然后,使用矩阵变换(如旋转、平移和缩放)来更新关节角度对模型的影响。这些变换组合起来,形成机械臂的动态运动。 6. **四向旋转**:机械臂可能有四个独立的旋转轴,允许它在X、Y、Z三个轴上旋转,以及额外的绕自身轴线的旋转。每个轴的旋转都由对应的关节角度控制。 7. **交互控制**:用户可能可以通过输入设备(如鼠标或键盘)调整关节角度,实时观察机械臂的运动。这需要将用户输入转换为关节角度,并应用到运动学模型中。 8. **图形渲染**:OpenGL提供了多种渲染技术,如深度测试、光照模型、纹理映射等,可以用于提高机械臂模拟的真实感。例如,可以添加材质和纹理来模拟金属表面,或者使用光照来增强立体感。 这个项目结合了OpenGL的图形渲染能力与C#的编程灵活性,构建了一个可以直观展示机械臂运动的仿真环境。通过理解并实现这些关键概念,开发者不仅能够学习到图形编程技巧,还能深入理解机器人学的基本原理。

    汽车电子基于AUTOSAR的BSW层通信协议栈详解:模块功能与报文收发流程设计

    内容概要:文章深入探讨了AUTOSAR BSW层中的通信协议栈,详细介绍了各功能模块的作用与层级关系。BSW层的通信协议栈分为多个层次,包括服务层、ECU抽象层和微控制器抽象层。服务层涉及COM、PduR、IpduM和BusTP模块,负责信号处理、PDU路由及大数据传输等功能;ECU抽象层的BusInterface模块实现数据队列管理和基于时间触发的发送;微控制器抽象层的TrcvDriver和BusDriver则负责底层硬件的初始化和数据收发。文中还具体描述了BSW层通过COM模块进行报文发送和接收的流程,强调了各模块间的协作机制。此外,文章提到CAN、CAN FD以及未来的CAN XL技术的应用前景。; 适合人群:汽车电子领域工程师,尤其是对AUTOSAR架构有一定了解的技术人员。; 使用场景及目标:①理解AUTOSAR BSW层中通信协议栈的工作原理;②掌握BSW层各模块的功能及其交互方式;③熟悉CAN、CAN FD和CAN XL等通信协议的实际应用。; 其他说明:阅读本文有助于深入了解AUTOSAR BSW层的设计理念和技术细节,建议结合实际项目经验进行学习,以便更好地掌握BSW层的开发和调试技巧。

    【数学建模竞赛】MathorCup高校数学建模挑战赛:竞赛规则、备赛技巧及组队策略详解

    内容概要:MathorCup是一项面向高校学生的知名数学建模竞赛,由专业机构和行业专家支持,主要为本科生和研究生提供竞赛平台(部分高中生也可参加)。竞赛以团队形式进行,每队3人,涵盖优化、数据分析、算法设计及工业应用等方向的题目,比赛时长为3-4天。竞赛每年举办一次,通常在4月或11月,设有全国一、二、三等奖及成功参赛奖,对学术研究、奖学金评定及就业申请有帮助。备赛技巧包括基础技能储备(数学工具、编程能力、论文写作),分阶段学习(前期学习经典模型和练习往届赛题,赛前一周模拟实战),以及合理的时间管理和组队策略(角色分工、协作要点、避免常见错误)。此外,推荐了相关书籍、在线课程和工具包,强调保持耐心和注重创新的参赛心态。 适合人群:高校本科生、研究生(部分高中生)。 使用场景及目标:①帮助学生了解数学建模竞赛的基本信息和流程;②为参赛者提供备赛技巧和组队策略;③指导学生如何有效利用时间和资源准备竞赛。 阅读建议:此资源详细介绍了MathorCup竞赛的各项信息,不仅涵盖了基本规则和奖项设置,还提供了详细的备赛技巧和组队策略。建议参赛者仔细阅读并结合实际情况进行实践,特别是注重团队协作和时间管理,同时参考推荐的书籍、课程和工具包,提升自身能力。

    基于COMSOL的导体线圈熔断电流计算及电磁热耦合分析

    内容概要:本文详细介绍了利用 COMSOL 多物理场仿真软件进行导体线圈熔断电流计算的方法。首先阐述了电磁热耦合的基本原理,即电流通过导体时产生的电磁场和热效应之间的相互影响。接着逐步讲解了在 COMSOL 中建立电磁场和温度场模型的具体步骤,包括定义物理场、设置材料属性、进行网格划分、配置求解器等。文中还特别强调了材料属性的温度依赖性和边界条件设置的重要性,并提供了多个 MATLAB 和 Python 代码片段用于指导具体操作。最终通过对仿真结果的分析,能够确定导体线圈在不同电流强度下的温度分布情况,进而判断熔断发生的可能性及其位置。 适用人群:从事电气工程、电磁兼容性研究的专业人士和技术爱好者。 使用场景及目标:适用于需要评估导体线圈安全性、优化电路设计的研究项目。主要目的是通过仿真手段提前预知潜在的风险点,确保设备的安全可靠运行。 其他说明:文中提到的一些高级技巧如考虑材料相变时的潜热效应、使用变形几何模块模拟真实熔断过程等,虽然增加了仿真的复杂度,但也提高了结果的准确性。此外,作者提醒读者要注意实验环境因素对仿真结果的影响,如散热条件的选择等。

    租房平台系统 2025免费JAVA微信小程序毕设

    2025免费微信小程序毕业设计成品,包括源码+数据库+往届论文资料,附带启动教程和安装包。 启动教程:https://www.bilibili.com/video/BV1BfB2YYEnS 讲解视频:https://www.bilibili.com/video/BV1BVKMeZEYr 技术栈:Uniapp+Vue.js+SpringBoot+MySQL。 开发工具:Idea+VSCode+微信开发者工具。

    新能源汽车推广应用推荐车型目录网络爬虫.zip

    1、该资源内项目代码经过严格调试,下载即用确保可以运行! 2、该资源适合计算机相关专业(如计科、人工智能、大数据、数学、电子信息等)正在做课程设计、期末大作业和毕设项目的学生、或者相关技术学习者作为学习资料参考使用。 3、该资源包括全部源码,需要具备一定基础才能看懂并调试代码。 新能源汽车推广应用推荐车型目录网络爬虫.zip 新能源汽车推广应用推荐车型目录网络爬虫.zip 新能源汽车推广应用推荐车型目录网络爬虫.zip 新能源汽车推广应用推荐车型目录网络爬虫.zip 新能源汽车推广应用推荐车型目录网络爬虫.zip 新能源汽车推广应用推荐车型目录网络爬虫.zip 新能源汽车推广应用推荐车型目录网络爬虫.zip 新能源汽车推广应用推荐车型目录网络爬虫.zip 新能源汽车推广应用推荐车型目录网络爬虫.zip 新能源汽车推广应用推荐车型目录网络爬虫.zip

    在线办公系统 2025免费JAVA微信小程序毕设

    2025免费微信小程序毕业设计成品,包括源码+数据库+往届论文资料,附带启动教程和安装包。 启动教程:https://www.bilibili.com/video/BV1BfB2YYEnS 讲解视频:https://www.bilibili.com/video/BV1BVKMeZEYr 技术栈:Uniapp+Vue.js+SpringBoot+MySQL。 开发工具:Idea+VSCode+微信开发者工具。

Global site tag (gtag.js) - Google Analytics