对于程序猿来说, 世间最可怕的不是我们过时了, 最最可怕的是我们刚学的编程语言就已经过时了 —— 猎狐姥爷 ^@^
兴趣偏好,或者对于编程语法的追求和欣赏是一个方面, 另外一个方面,就是究竟这个语言在未来开发市场或者是招聘市场上究竟能占个什么份量, 往往判断这些并不是我们这些 程序猿 所擅长滴 ~
在今天这篇文章里, 姥爷我总结了五门比较有发展后劲的编程语言, 虽然他们不是刚出现在我们的视野里, 但是对于未来我们选择的编程方向还是有非常重要的参考意义滴
Groovy
Groovy呢是一种面向对象的脚本编程语言,最早是由Apache组织为java平台开发滴。在2003首次发布,但是第一个稳定版本(Groovy 1)迟迟出现在2007年。但是从那时起,它就广泛的被Netflix、LinkedIn、空客和万事达等公司所采用和应用
Groovy动态编译java字节码,因此它无缝集成任何java库。如果你已经在java或其他语言中使用过括号语法的话学习Groovy绝对比较简单哈
如果你想知道更多关于Groovy优点,如下资源可以了解一下:
https://www.zhihu.com/question/21740715
官方网站上对于java和groovy的差异也有一个非常好的概括
Groovy是开源的项目,可以在GitHub上找到相关源代码,如果你想的话你可以捐助你也可以自由的捐助相关代码。
虽然Groovy因为增加了开发人员开发效率而广为赞赏,Grails的Web应用框架(Grails Web Application Framework),也可以是一个很好使用它的理由,绝对值得你了解一下。
Grails可以用Groovy语言构建Web应用程序。它有许多很酷很方便的功能,如集成的ORM / NoSQL支持插入,强大视图技术,和社区支持等等
Rust
Rust是开源语言,所以你可以在GitHub上找到源代码。如果你想学它,你可以从核心团队写的书开始学习。也可以从官方网站下载Rust的编译器,在这里你可以找到许多有用的信息。
Rust能够使得web应用比本地应用更加有竞争力
Elixir
Elixir是一种功能性编程语言,可以构建实时分布式应用程序。Elixir于2011由一个Ruby核心贡献者创建,目的是通过编写并发代码来解决Ruby的相关问题。新的语言,明确的目标是 “提高Rails应用程序在多个CPU上的运行性能”
对于网络应用程序和高可用性系统(如银行软件)和数据处理编程来说,Elixir是一个不错的选择。Elixir程序运行在Erlang虚拟机(束)上并编译为Erlang bytecode。因此,Elixir开发者也能充分利用Erlang的生态系统。
如果你没有学习过函数式编程,开始使用Elixir可能并不容易,但是一旦你开始这样做,它会给你一个全新的编程观。简而言之,函数式编程与面向对象编程有很大的不同,因为它不使用对象和类,程序是在函数和模块内执行运行。
如果你需要一些鼓励来学习Elixir的话,Elixir官方网站有许多有用的资源和学习指南,也可以从这里安装Elixir。也可以在GitHub上查看源代码,了解最新的问题和特性发布。
Go
Go编程语言是谷歌于2009发布的,从那时起谷歌就在它的许多生产系统中使用它。GO是一种静态类支持并发的、可编译的编程语言,它的创建是为了管理大型组织在日常工作中面临的编程问题。因此,类似于java和C++,可以方便的扩展到大型系统。
根据Go 2016调查的结果,大多数开发人员对于Go都很满意。最常提到的原因是“简单性、易用性、并发性特性和性能”。为了支持代码测试-编译循环,所以减少了编译时间,因此它非常适合测试驱动开发(TDD)模型
Go拥有很多知名的企业用户,如YouTube,bitbucket,Basecamp,英国广播公司,Dropbox等等,当然在GitHub页面上你也会发现一长串的其它用户。
Go的官方网站是一个很好的资源来源,例如,你可以在这里找到一个超酷的现场演示,让你测试Go是如何工作的,以及许多其他有用的东西,如文件,软件包,安装指南,和一个Go相关博客。Go同样也是开源的,访问GitHub源代码的源代码也是学习的一个不错手段
R
近年来,随着大数据的越来越重要,R语言也开始越来越流行。R语言是开源版本的数据分析语言,是由两位学者Ross Ihaka和Robert Gentleman在上世纪90年代的新西兰奥克兰大学开发
R可用于统计计算和图形,并允许您完成与数据处理、数据挖掘、数据分析和统计报告相关的任务,最重要的它的免费和开源,使得和传统的付费开发语言,例如, SAS来说,更加有吸引力
近些年R在人才市场上需求量及高,根据2016年的数据科学薪酬调查表明,R相关的软件开发商已经开出了非常诱人的工资待遇, 也使得R成为了近些年的明星语言
你可以从官方网站下载R,在那里你也可以找到R相关的杂志,手册和书籍。如果你想看最新的教程和博客上,可以去看看r-bloggers网站
R使用SVN版本控制,可以访问在GitHub上的只读镜像,浏览更容易一点。如果你有兴趣做R相关的开发,GitHub页面是一个好的选择。
以上就是姥爷我推荐的5门值得大家在2017年深究的编程语言, 希望大家能够有机会在工作和项目中尝试使用,如果你有其他推荐的编程,请在下面留言处给我留言,感谢阅读~
相关推荐
这本书是由raywenderlich出品,raywenderlich是提供高质量编程教程的知名平台,他们出品的教程通常都具有高质量和实用性强的特点,这本教程也不例外,被评价为是编写服务器代码的精品教程,对读者来说绝对值得购买。...
【标题】:Bourne——Kotlin编程框架的探索 在软件开发领域,Kotlin是一种备受推崇的现代编程语言,以其简洁、安全和富有表现力的语法吸引了众多...如果你对Kotlin编程或框架设计感兴趣,"Bourne"绝对值得一探究竟。
重点:所有项目均附赠详尽的SQL文件,这一细节的处理,让我们的项目相比其他博主的作品,严谨性提升了不止一个量级!更重要的是,所有项目源码均经过我亲自的严格测试与验证,确保能够无障碍地正常运行。 1.项目适用场景:本项目特别适用于计算机领域的毕业设计课题、课程作业等场合。对于计算机科学与技术等相关专业的学生而言,这些项目无疑是一个绝佳的选择,既能满足学术要求,又能锻炼实际操作能力。 2.超值福利:所有定价为9.9元的项目,均包含完整的SQL文件。如需远程部署可随时联系我,我将竭诚为您提供满意的服务。在此,也想对一直以来支持我的朋友们表示由衷的感谢,你们的支持是我不断前行的动力! 3.求关注:如果觉得我的项目对你有帮助,请别忘了点个关注哦!你的支持对我意义重大,也是我持续分享优质资源的动力源泉。再次感谢大家的支持与厚爱! 4.资源详情:https://blog.csdn.net/2301_78888169/article/details/144929660 更多关于项目的详细信息与精彩内容,请访问我的CSDN博客!
2024年AI代码平台及产品发展简报-V11
蓝桥杯算法学习冲刺(主要以题目为主)
QPSK调制解调技术研究与FPGA实现:详细实验文档的探索与实践,基于FPGA实现的QPSK调制解调技术:实验文档详细解读与验证,QPSK调制解调 FPGA设计,有详细实验文档 ,QPSK调制解调; FPGA设计; 详细实验文档,基于QPSK调制的FPGA设计与实验文档
PID、ADRC和MPC轨迹跟踪控制器在Matlab 2018与Carsim 8中的Simulink仿真研究,PID、ADRC与MPC轨迹跟踪控制器在Matlab 2018与Carsim 8中的仿真研究,PID, ADRC和MPC轨迹跟踪控制器Simulink仿真模型。 MPC用于跟踪轨迹 ADRC用于跟踪理想横摆角 PID用于跟踪轨迹 轨迹工况有双移线,避障轨迹,正弦轨迹多种 matlab版本为2018,carsim版本为8 ,PID; ADRC; MPC; 轨迹跟踪控制器; Simulink仿真模型; 双移线; 避障轨迹; 正弦轨迹; MATLAB 2018; CarSim 8,基于Simulink的PID、ADRC与MPC轨迹跟踪控制器仿真模型研究
重点:所有项目均附赠详尽的SQL文件,这一细节的处理,让我们的项目相比其他博主的作品,严谨性提升了不止一个量级!更重要的是,所有项目源码均经过我亲自的严格测试与验证,确保能够无障碍地正常运行。 1.项目适用场景:本项目特别适用于计算机领域的毕业设计课题、课程作业等场合。对于计算机科学与技术等相关专业的学生而言,这些项目无疑是一个绝佳的选择,既能满足学术要求,又能锻炼实际操作能力。 2.超值福利:所有定价为9.9元的项目,均包含完整的SQL文件。如需远程部署可随时联系我,我将竭诚为您提供满意的服务。在此,也想对一直以来支持我的朋友们表示由衷的感谢,你们的支持是我不断前行的动力! 3.求关注:如果觉得我的项目对你有帮助,请别忘了点个关注哦!你的支持对我意义重大,也是我持续分享优质资源的动力源泉。再次感谢大家的支持与厚爱! 4.资源详情:https://blog.csdn.net/2301_78888169/article/details/144486173 更多关于项目的详细信息与精彩内容,请访问我的CSDN博客!
内容概要:本文档详细介绍了一个利用Matlab实现Transformer-Adaboost结合的时间序列预测项目实例。项目涵盖Transformer架构的时间序列特征提取与建模,Adaboost集成方法用于增强预测性能,以及详细的模型设计思路、训练、评估过程和最终的GUI可视化。整个项目强调数据预处理、窗口化操作、模型训练及其优化(包括正则化、早停等手段)、模型融合策略和技术部署,如GPU加速等,并展示了通过多个评估指标衡量预测效果。此外,还提出了未来的改进建议和发展方向,涵盖了多层次集成学习、智能决策支持、自动化超参数调整等多个方面。最后部分阐述了在金融预测、销售数据预测等领域中的广泛应用可能性。 适合人群:具有一定编程经验的研发人员,尤其对时间序列预测感兴趣的研究者和技术从业者。 使用场景及目标:该项目适用于需要进行高质量时间序列预测的企业或机构,比如金融机构、能源供应商和服务商、电子商务公司。目标包括但不限于金融市场的波动性预测、电力负荷预估和库存管理。该系统可以部署到各类平台,如Linux服务器集群或云计算环境,为用户提供实时准确的预测服务,并支持扩展以满足更高频率的数据吞吐量需求。 其他说明:此文档不仅包含了丰富的理论分析,还有大量实用的操作指南,从项目构思到具体的代码片段都有详细记录,使用户能够轻松复制并改进这一时间序列预测方案。文中提供的完整代码和详细的注释有助于加速学习进程,并激发更多创新想法。
液滴穿越障碍:从文献到案例的复现研究,液滴破裂与障碍物穿越:文献复现案例研究,液滴生成并通过障碍物破裂。 该案例是文献复现,文献与案例一起。 ,液滴生成; 障碍物破裂; 文献复现; 案例研究,液滴破裂:障碍挑战的文献复现案例
蓝桥杯算法学习冲刺(主要以题目为主)
蓝桥杯算法学习冲刺(主要以题目为主)
基于最小递归二乘法的MPC自适应轨迹跟踪控制优化 针对轮胎刚度时变特性提升模型精度与鲁棒性,仿真验证满足车辆低速高精度跟踪与高速稳定性提升。,基于变预测时域MPC自适应轨迹跟踪控制与轮胎侧偏刚度优化提升模型精度和鲁棒性,基于变预测时域的MPC自适应轨迹跟踪控制,针对轮胎刚度时变的特点造成控制模型精度降低,基于最小递归二乘法(RLS)估算的轮胎侧偏刚度,提升了模型的控制精度和鲁棒性,通过carsim与simulink联合仿真结果发现,改进后的轨迹跟踪控制器既满足了车辆低速行驶下的轨 迹跟踪精度,也一定程度上克服了高速下车辆容易失去稳定性的问题。 有详细的lunwen分析说明和资料,以及本人的,仿真包运行。 ,基于变预测时域的MPC; 自适应轨迹跟踪控制; 轮胎刚度时变; 控制模型精度降低; 最小递归二乘法(RLS)估算; 模型控制精度和鲁棒性提升; carsim与simulink联合仿真; 轨迹跟踪控制器; 车辆稳定性。,基于变预测时域MPC的轮胎刚度自适应轨迹跟踪控制策略研究
GMSK调制解调技术研究:基于FPGA设计与实验详解,GMSK调制解调技术详解:基于FPGA设计的实验文档与实践应用,GMSK调制解调 FPGA设计,有详细实验文档 ,GMSK调制解调; FPGA设计; 详细实验文档; 实验结果分析,GMSK调制解调技术:FPGA设计与实验详解
# 基于Arduino和Python的Cansat卫星系统 ## 项目简介 本项目是一个Cansat卫星系统,旨在设计和实现一个小型卫星模型,通过火箭发射至1公里高空,并使用地面站接收其传输的数据。项目涉及Arduino编程、Python数据处理和可视化。 ## 主要特性和功能 1. 硬件组件 使用Arduino Nano作为Cansat的微控制器。 搭载BMP 280温度和压力传感器、ATGM336H GPS模块、LoRa通信模块等。 地面站使用Arduino Uno和LoRa通信模块接收数据。 2. 数据处理 使用Python进行数据处理和可视化,包括数据清洗、计算风速、绘制温度、压力、风速和海拔随时间变化的图表等。 3. 通信与控制 通过LoRa模块实现Cansat与地面站之间的数据传输。 提供实时监视和记录数据的脚本。 ## 安装和使用步骤 ### 1. 硬件准备
U9300C 龙尚4G模块安装后模块才能正常使用,win7 win10驱动程序,支持USB转接板。
# 基于Arduino平台的物联网温湿度监控系统 ## 项目简介 这是一个基于Arduino平台的物联网温湿度监控项目,旨在通过简单的硬件设备实现环境数据的实时监测与远程管理。该项目适用于智能家居、农业种植等领域。 ## 项目的主要特性和功能 1. 温湿度数据采集通过Arduino板连接温湿度传感器,实时采集环境数据。 2. 数据传输将采集到的数据通过无线网络模块发送到服务器或远程终端。 3. 数据可视化可在电脑或移动设备端展示实时的温湿度数据。 4. 报警功能当温湿度数据超过预设阈值时,自动触发报警通知。 ## 安装使用步骤 前提假设用户已经下载了本项目的源码文件。以下是简单明了的安装使用步骤 1. 环境准备安装Arduino开发环境,配置必要的硬件接口。 2. 硬件连接将Arduino板与温湿度传感器、无线网络模块连接。 3. 代码上传将本项目提供的Arduino代码上传至Arduino板。
基于需求响应与清洁能源接入的配电网重构优化:综合成本与混合整数凸规划模型分析(matlab实现),基于需求响应与清洁能源接入的配电网重构算法研究:网损与成本优化的仿真分析,高比例清洁能源接入下计及需求响应的配电网重构(matlab代码) 该程序复现《高比例清洁能源接入下计及需求响应的配电网重构》,以考虑网损成本、弃风弃光成本和开关操作惩罚成本的综合成本最小为目标,针对配电网重构模型的非凸性,引入中间变量并对其进行二阶锥松弛,构建混合整数凸规划模型,采用改进的 IEEE33 节点配电网进行算例仿真,分析了需求响应措施和清洁能源渗透率对配电网重构结果的影响。 该程序复现效果和出图较好(详见程序结果部分),注释清楚,方便学习 ,高比例清洁能源; 需求响应; 配电网重构; 二阶锥松弛; 综合成本最小化; MATLAB代码; IEEE33节点配电网; 复现效果; 出图; 注释清楚。,Matlab代码复现:高比例清洁能源接入下的配电网重构模型与需求响应分析
# 基于C++的RapidJSON库测试项目 ## 项目简介 本项目是一个基于C++的RapidJSON库测试项目,主要用于测试RapidJSON库的功能正确性、性能以及稳定性。RapidJSON是一个高效的C++ JSON解析生成库,广泛应用于各种场景。本项目通过编写一系列的单元测试,覆盖了RapidJSON库的主要功能点,包括JSON解析、生成、内存管理、编码转换等,以确保RapidJSON库在各种情况下都能正确、稳定地工作。 ## 项目的主要特性和功能 1. 单元测试框架使用Google Test测试框架进行单元测试,确保测试的可靠性和可扩展性。 2. 全面测试覆盖覆盖了RapidJSON库的主要功能点,包括JSON解析、生成、内存管理、编码转换等,以及针对各种输入数据的测试。 3. 性能测试通过性能基准测试,评估RapidJSON库在处理不同规模和类型的JSON数据时的性能表现。
蓝桥杯算法学习冲刺(主要以题目为主)