`
youyu4
  • 浏览: 442845 次
社区版块
存档分类
最新评论

分布式ID生成方法

 
阅读更多

分布式ID生成方法

 

 

需求分析

 

    几乎所有的业务系统,都有生成一个记录标识的需求,例如:

 

  • 消息标识:message-id
  • 订单标识:order-id
  • 帖子标识:tiezi-id

    这个记录标识往往就是数据库中的唯一主键,数据库上会建立聚集索引(cluster index)

 

 

  • 聚集索引:物理存储上以这个字段排序。
  • 非聚集索引:普通索引,存储的是实际记录的指针,其访问效率会比聚集索引慢,如果记录标识在生成时能够基本按照时间有序。

 

    记录标识生成(也就是上文提到的三个XXX-id)的两大核心需求:

 

  • 全局唯一
  • 趋势有序

 

 

 

 

常用方法

 

方法一:使用数据库的 auto_increment 来生成全局唯一递增ID

 

    优点

 

  1. 简单,使用数据库已有的功能
  2. 能够保证唯一性
  3. 能够保证递增性
  4. 步长固定

 

    缺点

 

  1. 可用性难以保证:数据库常见架构是一主多从+读写分离,生成自增ID是写请求,主库挂了就玩不转了
  2. 扩展性差,性能有上限:因为写入是单点,数据库主库的写性能决定ID的生成性能上限,并且难以扩展

 

    改进方法

 

  1. 增加主库,避免写入单点
  2. 数据水平切分,保证各主库生成的ID不重复

       

 

       如上图所述,由1个写库变成3个写库,每个写库设置不同的auto_increment初始值,以及相同的增长步长,以保证每个数据库生成的ID是不同的(上图中库0生成0,3,6,9…,库1生成1,4,7,10,库2生成2,5,8,11…)

 

    缺点

 

  1. 丧失了ID生成的“绝对递增性”:先访问库0生成0,3,再访问库1生成1,可能导致在非常短的时间内,ID生成不是绝对递增的(这个问题不大,我们的目标是趋势递增,不是绝对递增)
  2. 数据库的写压力依然很大,每次生成ID都要访问数据库。

 

    为了解决上述两个问题,引出了第二个常见的方案

 

 

 

 

 

方法二:单点批量ID生成服务

 

       分布式系统之所以难,很重要的原因之一是“没有一个全局时钟,难以保证绝对的时序”,要想保证绝对的时序,还是只能使用单点服务,用本地时钟保证“绝对时序”。数据库写压力大,是因为每次生成ID都访问了数据库,可以使用批量的方式降低数据库写压力。

       如上图所述,数据库使用双master保证可用性,数据库中只存储当前ID的最大值,例如0。ID生成服务假设每次批量拉取6个ID,服务访问数据库,将当前ID的最大值修改为5,这样应用访问ID生成服务索要ID,ID生成服务不需要每次访问数据库,就能依次派发0,1,2,3,4,5这些ID了,当ID发完后,再将ID的最大值修改为11,就能再次派发6,7,8,9,10,11这些ID了,于是数据库的压力就降低到原来的1/6了。

 

 

    优点

 

  1. 保证了ID生成的绝对递增有序
  2. 大大的降低了数据库的压力,ID生成可以做到每秒生成几万几十万个

 

    缺点

 

  1. 服务仍然是单点
  2. 如果服务挂了,服务重启起来之后,继续生成ID可能会不连续,中间出现空洞(服务内存是保存着0,1,2,3,4,5,数据库中max-id是5,分配到3时,服务重启了,下次会从6开始分配,4和5就成了空洞,不过这个问题也不大)
  3. 虽然每秒可以生成几万几十万个ID,但毕竟还是有性能上限,无法进行水平扩展

 

    改进方法

 

        单点服务的常用高可用优化方案是“备用服务”,也叫“影子服务”,所以我们能用以下方法优化上述缺点(1)。


 

       如上图,对外提供的服务是主服务,有一个影子服务时刻处于备用状态,当主服务挂了的时候影子服务顶上。这个切换的过程对调用方是透明的,可以自动完成,常用的技术是vip+keepalived,具体就不在这里展开。

 

 

 

 

 

方法三:uuid

 

       上述方案来生成ID,虽然性能大增,但由于是单点系统,总还是存在性能上限的。同时,上述两种方案,不管是数据库还是服务来生成ID,业务方Application都需要进行一次远程调用,比较耗时。有没有一种本地生成ID的方法,即高性能,又时延低呢?

 

       uuid是一种常见的方案:string ID =GenUUID();

 

    优点

 

  1. 本地生成ID,不需要进行远程调用,时延低
  2. 扩展性好,基本可以认为没有性能上限

 

    缺点

 

  1. 无法保证趋势递增
  2. uuid过长,往往用字符串表示,作为主键建立索引查询效率低,常见优化方案为“转化为两个uint64整数存储”或者“折半存储”(折半后不能保证唯一性)

 

 

 

 

 

方法四:取当前毫秒数

 

       uuid是一个本地算法,生成性能高,但无法保证趋势递增,且作为字符串ID检索效率低,有没有一种能保证递增的本地算法呢?

 

       取当前毫秒数是一种常见方案:uint64 ID = GenTimeMS();

 

 

    优点

 

  1. 本地生成ID,不需要进行远程调用,时延低
  2. 生成的ID趋势递增
  3. 生成的ID是整数,建立索引后查询效率高

 

    缺点

 

  1. 如果并发量超过1000,会生成重复的ID
  2. 我去,这个缺点要了命了,不能保证ID的唯一性。当然,使用微秒可以降低冲突概率,但每秒最多只能生成1000000个ID,再多的话就一定会冲突了,所以使用微秒并不从根本上解决问题。

 

 

 

 

方法五:类snowflake算法

 

       snowflake是twitter开源的分布式ID生成算法,其核心思想是:一个long型的ID,使用其中41bit作为毫秒数,10bit作为机器编号,12bit作为毫秒内序列号。这个算法单机每秒内理论上最多可以生成1000*(2^12),也就是400W的ID,完全能满足业务的需求。

 

       借鉴snowflake的思想,结合各公司的业务逻辑和并发量,可以实现自己的分布式ID生成算法。

 

 

    举例,假设某公司ID生成器服务的需求如下:

 

  1. 单机高峰并发量小于1W,预计未来5年单机高峰并发量小于10W
  2. 有2个机房,预计未来5年机房数量小于4个
  3. 每个机房机器数小于100台
  4. 目前有5个业务线有ID生成需求,预计未来业务线数量小于10个

 

    分析过程如下:

 

  1. 高位取从2016年1月1日到现在的毫秒数(假设系统ID生成器服务在这个时间之后上线),假设系统至少运行10年,那至少需要10年*365天*24小时*3600秒*1000毫秒=320*10^9,差不多预留39bit给毫秒数
  2. 每秒的单机高峰并发量小于10W,即平均每毫秒的单机高峰并发量小于100,差不多预留7bit给每毫秒内序列号
  3. 5年内机房数小于4个,预留2bit给机房标识
  4. 每个机房小于100台机器,预留7bit给每个机房内的服务器标识
  5. 业务线小于10个,预留4bit给业务线标识

 

 

   这样设计的64bit标识,可以保证:

 

  1. 每个业务线、每个机房、每个机器生成的ID都是不同的
  2. 同一个机器,每个毫秒内生成的ID都是不同的
  3. 同一个机器,同一个毫秒内,以序列号区区分保证生成的ID是不同的
  4. 将毫秒数放在最高位,保证生成的ID是趋势递增的

 

    缺点

 

  1. 由于“没有一个全局时钟”,每台服务器分配的ID是绝对递增的,但从全局看,生成的ID只是趋势递增的(有些服务器的时间早,有些服务器的时间晚)

 

    最后一个容易忽略的问题

 

       生成的ID,例如message-id/ order-id/ tiezi-id,在数据量大时往往需要分库分表,这些ID经常作为取模分库分表的依据,为了分库分表后数据均匀,ID生成往往有“取模随机性”的需求,所以我们通常把每秒内的序列号放在ID的最末位,保证生成的ID是随机的。

 

       又如果,我们在跨毫秒时,序列号总是归0,会使得序列号为0的ID比较多,导致生成的ID取模后不均匀。解决方法是,序列号不是每次都归0,而是归一个0到9的随机数,这个地方。

 

  • 大小: 59.1 KB
  • 大小: 41.7 KB
  • 大小: 48.7 KB
  • 大小: 29.4 KB
分享到:
评论

相关推荐

    细聊分布式ID生成方法.pdf

    ### 分布式ID生成方法详解 #### 一、引言 在分布式系统中,全局唯一标识符(Global Unique Identifier, GUID)的生成是一项基础而重要的技术。这些标识符被广泛应用于消息传递、订单处理和帖子识别等场景。本文将...

    细聊分布式ID生成方法

    总结,选择哪种分布式ID生成方法取决于业务场景的具体需求,如系统的并发量、趋势有序性的要求、可用性和扩展性等。常见的方法各有优劣,可以根据实际情况权衡选择。例如,如果对ID趋势有序性要求较高,可以考虑使用...

    分布式ID生成策略_snowflake算法

    分布式ID生成策略是现代互联网应用中的重要组成部分,尤其是在大数据时代,每个数据实体通常都需要一个唯一标识符(ID)来区分其身份。Snowflake算法是由Twitter开源的一种高效且可扩展的分布式ID生成方案,广泛应用...

    浅谈CAS在分布式ID生成方案上的应用

    在众多的分布式ID生成方法中,基于数据库自增ID的方式是一种常见的解决方案。具体来说,就是在数据库中创建一张表,用来存储当前的最大ID值,每当需要生成新的ID时,就在该表中插入一条新记录,从而获得一个新的ID值...

    java 分布式 代码生成器 唯一ID

    结合上述信息,"idGenerate"这个文件很可能是包含了一个Java实现的分布式代码生成器项目,可能包含了Snowflake算法或者其他分布式ID生成策略的源代码。通过学习和理解这些代码,我们可以更好地掌握在Java环境中如何...

    分布式id方法

    ### 分布式ID生成方法详解 #### 一、需求背景及重要性 在现代软件开发过程中,无论是消息系统、订单管理、论坛应用等场景,都离不开一个关键元素——记录标识,比如`message-id`、`order-id`或`tiezi-id`等。这些...

    百度开源的分布式 ID 生成器,太强大了!(csdn)————程序.pdf

    《深入理解百度开源的分布式ID生成器UidGenerator》 在分布式系统中,生成全局唯一ID是一个常见的需求,而百度开源的UidGenerator就是这样一款强大的工具。它基于Snowflake模型,为系统提供了高性能且具有唯一性的...

    分布式id生成详解.pdf

    分布式ID生成是现代互联网系统中不可或缺的一个环节,它在各种业务场景中起到标识唯一对象的作用。为了满足分布式环境的需求,生成的ID需要具备以下几个关键特性: 1. 唯一性:确保每个ID在全球范围内都是独一无二...

    分布式id生成器.zip

    Vesta,uidgennator等分布式id生成方案 UidGenerator是Java实现的, 基于Snowflake算法的唯一ID生成器。UidGenerator以组件形式工作在应用项目中, 支持自定义workerId位数和初始化策略, 从而适用于docker等虚拟化环境...

    通用、灵活、高性能的分布式 ID 生成器

    分布式ID生成器是现代互联网系统中的重要组成部分,它在大数据量和高并发的场景下扮演着关键角色。本文将深入探讨“通用、灵活、高性能”的分布式ID生成器的设计原理、实现方式以及它在服务器应用和分布式服务/框架...

    分布式ID生成器(雪花算法SpringBoot版)

    全局唯一ID作为一种唯一标识来区分数据,可用作订单号、用户ID等。ID生成器是生成全局唯一ID的工具,可封装为一种基础服务为其他业务提供服务。因此此项目就是用springboot封装ID生成器,让各种业务系统调用

    美团双buffer分布式ID生成系统

    美团的双buffer分布式ID生成系统便是解决此类问题的一种解决方案。 【美团双bufferID系统原理】 美团的双buffer分布式ID生成系统基于Twitter的Snowflake算法进行改良,核心思想是将ID分为多个部分,如时间戳、工作...

    Go-GolangMysql实现的分布式ID生成服务

    本篇文章将详细探讨如何使用Go和MySQL来实现一个分布式ID生成服务。 ### 1. 分布式ID的重要性 在大规模分布式系统中,为了保证数据的一致性和避免冲突,每个新生成的ID必须是全局唯一的。传统的递增ID在多节点环境...

    基于redis的分布式id生成器 .zip

    基于redis的分布式id生成器。redis-id-生成器基于redis的分布式id生成器。基于redis的全球ID生成器。准备首先,要了解redis的EVAL,EVALSHA命令http://redis.io/commands/evalhttp://redis.io/commands/evalsha原理...

    分布式ID生成器解决方案SnowflakeX.docx

    为了应对这一挑战,出现了多种分布式ID生成方案,其中一种名为SnowflakeX的改进型分布式ID生成器以其卓越的性能和可靠性脱颖而出。 ### ID生成器的必要性 在分布式系统中,尤其是数据存储实现水平拆分的情况下,...

    分布式系统ID生成方案.pptx

    系统唯一ID是我们在设计一个系统的时候常常会遇见的问题,也常常为这个问题而纠结。生成ID的方法有很多,适应不同的场景、需求以及性能要求。所以有些比较复杂的系统会有多个ID生成的策略。

    分布式ID生成器的解决方案总结.docx

    分布式ID生成器是大型互联网系统中不可或缺的一部分,其主要任务是为系统中的各种实体生成全局唯一的标识符(ID)。在复杂分布式环境下,选择合适的ID生成策略对于系统的性能、可用性和可扩展性至关重要。以下是几种...

    分布式ID生成,雪花算法生成唯一ID工具类

    分布式ID生成,雪花算法生成唯一ID工具类。该工具类线程安全。 整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右

    基于C语言的分布式id生成器idCreator设计源码

    该项目是一款基于C语言开发的分布式ID生成器,名为idCreator。该系统由120个文件组成,包括52个头文件、50个C语言源文件、1个Git忽略文件、1个LICENSE文件、1个Markdown描述文件以及客户端相关的配置和脚本文件。该...

Global site tag (gtag.js) - Google Analytics