`

ReentrantLockd的非公平锁lock方法实现源码解析

阅读更多
//ReetrantLock源码解析:
 Lock lock = new ReentrantLock();
      try {
    	   lock.lock();
    	   ....doSomething
	} finally {
		lock.unlock();
	}
    //先从我们最常用的这个lock()方法开始.从非公平模式来看lock的实现,
    public void lock() {
        sync.lock();  //委托到sync对象实现.
    }
    //sync的实现
      abstract static class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = -5179523762034025860L;

        //抽象方法主要就是实现它
        abstract void lock();

        /**
         * Performs non-fair tryLock.  tryAcquire is
         * implemented in subclasses, but both need nonfair
         * try for trylock method.
         */
        final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }

        protected final boolean tryRelease(int releases) {
            int c = getState() - releases;
            if (Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            boolean free = false;
            if (c == 0) {
                free = true;
                setExclusiveOwnerThread(null);
            }
            setState(c);
            return free;
        }

        protected final boolean isHeldExclusively() {
            // While we must in general read state before owner,
            // we don't need to do so to check if current thread is owner
            return getExclusiveOwnerThread() == Thread.currentThread();
        }

        final ConditionObject newCondition() {
            return new ConditionObject();
        }

        // Methods relayed from outer class

        final Thread getOwner() {
            return getState() == 0 ? null : getExclusiveOwnerThread();
        }

        final int getHoldCount() {
            return isHeldExclusively() ? getState() : 0;
        }

        final boolean isLocked() {
            return getState() != 0;
        }

        /**
         * Reconstitutes this lock instance from a stream.
         * @param s the stream
         */
        private void readObject(java.io.ObjectInputStream s)
            throws java.io.IOException, ClassNotFoundException {
            s.defaultReadObject();
            setState(0); // reset to unlocked state
        }
    }

    非公平模式下的sync:
     static final class NonfairSync extends Sync {
        private static final long serialVersionUID = 7316153563782823691L;

        //OK 找到实现方法
        final void lock() {
	  //利用CAS机制将state值设置为1即如果AbstractQueuedSynchronizer中的state为0,设置为1
            if (compareAndSetState(0, 1))
	        //成功.设置当前的线程为排他线程
                setExclusiveOwnerThread(Thread.currentThread());
            else
	       //尝试以独占方式获取对象。
                acquire(1);
        }

        protected final boolean tryAcquire(int acquires) {
            return nonfairTryAcquire(acquires);
        }
    }

     //调用AbstractQueuedSynchronizer中的acquire方法
     public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }
    //调用tryAcquire
    protected final boolean tryAcquire(int acquires) {
            return nonfairTryAcquire(acquires);
        }


  //然后就是调用这个方法
  final boolean nonfairTryAcquire(int acquires) {
            //获取当前的线程
            final Thread current = Thread.currentThread();
            int c = getState();
	    //获取当前state状态,如果是0则可以获取锁(其他线程已经释放了资源)。
            if (c == 0) {
	       
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
	    //当前线程就是独占线程.线程重入。
            else if (current == getExclusiveOwnerThread()) {
	       //state值+1。犹豫都是同一线程进入,且持有了锁所以这里可以不用CAS机制加数量。
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }

//假如上面方法获取锁失败即返回false继续执行:
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
先看addWaiter():

private Node addWaiter(Node mode) {
        //创建node节点。mode为模式当前设置的模式为Node.EXCLUSIVE排他锁;
        Node node = new Node(Thread.currentThread(), mode);
        // 快速入队。
        Node pred = tail;
        if (pred != null) {
            node.prev = pred;
	    //一切顺利没有其他线程入队此时用CAS入队。
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
	//不顺利有其他线程修改了队列的尾部node。那么就要循环入队
        enq(node);
        return node;
    }
    
 private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
	    //当前队列为空
            if (t == null) { //初始化一个节点
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
	        //无限尝试直到node加入队列
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }

然后是acquireQueued()方法:
final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
		//如果node的前一个节点是头节点且再次尝试获取锁成功
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
		
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }


     private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)
            /*
             如果前面的节点是signal即等待唤醒,那么当前节点可以被挂起。 
             */
            return true;
        if (ws > 0) {
            /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
	     说明前面的线程已经被取消,一直循环将这些节点移出队列。
             */
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
	     //设置前驱节点的状态为signal
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

     private final boolean parkAndCheckInterrupt() {
        //挂起当前线程
        LockSupport.park(this);
	//返回当前线程是否被中断
        return Thread.interrupted();
    }

//取消线程
    private void cancelAcquire(Node node) {
       
        if (node == null)
            return;

        node.thread = null;

      
        Node pred = node.prev;
        while (pred.waitStatus > 0)
            node.prev = pred = pred.prev;

        Node predNext = pred.next;

       
        node.waitStatus = Node.CANCELLED;

       
        if (node == tail && compareAndSetTail(node, pred)) {
            compareAndSetNext(pred, predNext, null);
        } else {
          
            int ws;
            if (pred != head &&
                ((ws = pred.waitStatus) == Node.SIGNAL ||
                 (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
                pred.thread != null) {
                Node next = node.next;
                if (next != null && next.waitStatus <= 0)
                    compareAndSetNext(pred, predNext, next);
            } else {
                unparkSuccessor(node);
            }

            node.next = node; // help GC
        }
    }



总结:lock方法的所有步骤实现:
   1、没有获得锁。
   2、再次尝试获得锁。
   3、获取锁失败就创建node加入队列。如果当前队列为空创建一个空节点为头尾,不为空即利用CAS机制无限循环直到加入队列为止。
   4、判断当前线程是否为第二个节点,如果是,再次尝试获取锁(成功设置当前节点为头节点),如果不是判断是否需要挂起当前线程。
     如果当前节点的前一个节点状态时singal时,挂起当前线程。如果不是signal,将当前节点前面的waitstatus>0(表明节点被中断)的所有节点移出队列。下次再进入这个方法的时候将前驱节点的值设置为singal。


所以所有线程都会阻塞在第四步。直到线程被唤醒。线程先离开必须是第二个节点,并且能够获取锁。
分享到:
评论

相关推荐

    第五章 ReentrantLock源码解析1--获得非公平锁与公平锁lock()1

    本篇文章将深入解析ReentrantLock的源码,重点讨论非公平锁和公平锁的获取过程。 1. **ReentrantLock的基本概念** ReentrantLock是由Java提供的可重入互斥锁,支持公平锁和非公平锁两种模式。非公平锁的特性是获取...

    公平锁&非公平锁.pdf

    公平锁(Fair Lock)和非公平锁(Non-Fair Lock)是 Java 中的两种锁机制,用于实现线程同步。它们都继承自 AbstractQueuedSynchronizer(AQS),是 ReentrantLock 的基础实现。 公平锁的特点是,它会按照线程的...

    ReentrantLock源码详解--公平锁、非公平锁

    ReentrantLock的lock()方法是通过调用sync属性的lock()方法实现的,sync是公平锁或非公平锁的实例。如果是公平锁,会调用FairSync的lock()方法,否则调用NonfairSync的lock()方法。lock()方法会调用AQS的acquire()...

    21 更高级的锁—深入解析Lock.pdf

    **lock方法源码分析** ReentrantLock的lock()方法通过内部的sync对象实现加锁。sync对象是一个抽象类,有两个具体实现:FairSync(公平锁)和NonfairSync(非公平锁)。它们都继承自AbstractQueuedSynchronizer...

    java 线程公平锁与非公平锁详解及实例代码

    非公平锁是ReentrantLock的默认模式,也是synchronized关键字的实现方式。 在ReentrantLock的内部,公平锁由FairSync类表示,非公平锁由NonfairSync类表示。在NonfairSync中,lock()方法直接尝试通过...

    多线程(11)ReentrantLock公平锁与非公平锁(修改)1

    // 公平锁 Lock unfairLock = new MyReentrantLock(false); // 非公平锁 List&lt;Worker&gt; workers = new ArrayList(); for (int i = 0; i ; i++) { if (i ) { workers.add(new Worker(fairLock)); } else { workers....

    基于JDK源码解析Java领域中的并发锁之设计与实现.pdf

    本文将基于JDK源码解析Java领域中的并发锁,探讨AQS基础同步器、LockSupport、Condition接口、Lock接口、ReadWriteLock接口以及自定义API操作的设计与实现。 一、AQS(AbstractQueuedSynchronizer)基础同步器的...

    58.Lock-ReentranLock-公平锁与非公平锁.mp4

    在学习Java过程中,自己收集了很多的Java的学习资料,分享给大家,有需要的欢迎下载,希望对大家有用,一起学习,一起进步。

    Java并发之ReentrantLock类源码解析

    Java并发之ReentrantLock类源码解析 ReentrantLock是Java并发包中的一种同步工具,它可以实现可重入锁的功能。ReentrantLock类的源码分析对理解Java并发机制非常重要。本文将对ReentrantLock类的源码进行详细分析,...

    易语言源码易语言lock挂机锁源码.rar

    "易语言lock挂机锁源码"是指使用易语言编写的,用于实现挂机锁功能的源代码。挂机锁通常是一种软件保护机制,它可以防止未经授权的用户在无人操作时继续使用计算机或软件,确保软件使用的安全性和合法性。 挂机锁的...

    Java源码解析之可重入锁ReentrantLock

    Java源码解析之可重入锁ReentrantLock ReentrantLock是一个可重入锁,在ConcurrentHashMap中使用了ReentrantLock。它是一个可重入的排他锁,它和synchronized的方法和代码有着相同的行为和语义,但有更多的功能。 ...

    java的Lock锁原理详解.docx

    // 简化版实现,省略了公平锁和非公平锁的逻辑 while (!tryLock()) { waiters.add(Thread.currentThread()); LockSupport.park(); } } @Override public boolean tryLock() { if (state.get() == 0 && ...

    基于JDK源码解析Java领域中的并发锁,我们需要特别关注哪些内容?

    基于JDK源码解析Java并发锁,我们需要关注以下几个关键知识点: 1. **AQS(AbstractQueuedSynchronizer)基础同步器**: AQS是一个用于构建锁和同步器的框架,它维护了一个FIFO的等待队列,提供了两种模式:独占和...

    lock4j高性能分布式锁 v2.2.5.zip

    与传统的synchronized关键字相比,lock4j提供了更为灵活的锁策略,包括公平锁、非公平锁、读写锁等,并且支持超时等待和自动解锁功能,使得在分布式环境下的并发控制更为得心应手。 二、核心特性 1. **高性能**:...

    锁实现lock

    在`lock.cpp`和`lock.h`这两个文件中,`lock.h`可能包含了对外部使用锁的接口声明,而`lock.cpp`则实现了具体的锁操作。例如,一个简单的加锁和解锁操作可以这样定义: 在`lock.h`: ```c #ifndef LOCK_H #define ...

    ReentrantLock源码的使用问题详解.docx

    本文将深入探讨ReentrantLock的原理,特别是其公平锁与非公平锁的概念,以及ReentrantLock的源码解析。 首先,我们了解什么是可重入锁。可重入锁允许一个线程多次获取同一锁,而不被阻塞。当一个线程已经持有了锁,...

    lock锁,lock锁和synchronized的对比

    一种显式定义同步锁对象来实现锁,提供了对共享资源的独占访问,每次只能有一个线程对Lock对象加锁,线程开始访问共享资源之前应先获得Lock锁。 # synchronized锁与lock锁的对比 Lock是显式锁,需要手动的开启和...

Global site tag (gtag.js) - Google Analytics