- 浏览: 7145 次
- 性别:
- 来自: 北京
文章分类
最新评论
5、读写锁
相比Java中的锁(Locks in Java)里Lock实现,读写锁更复杂一些。假设你的程序中涉及到对一些共享资源的读和写操作,且写操作没有读操作那么频繁。在没有写操作的时候,两个线程同时读一个资源没有任何问题,所以应该允许多个线程能在同时读取共享资源。但是如果有一个线程想去写这些共享资源,就不应该再有其它线程对该资源进行读或写(译者注:也就是说:读-读能共存,读-写不能共存,写-写不能共存)。这就需要一个读/写锁来解决这个问题。
Java在java.util.concurrent包中已经包含了读写锁。尽管如此,我们还是应该了解其实现背后的原理。
读/写锁的Java实现
先让我们对读写访问资源的条件做个概述:
读取 没有线程正在做写操作,且没有线程在请求写操作。
写入 没有线程正在做读写操作。
如果某个线程想要读取资源,只要没有线程正在对该资源进行写操作且没有线程请求对该资源的写操作即可。我们假设对写操作的请求比对读操作的请求更重要,就要提升写请求的优先级。此外,如果读操作发生的比较频繁,我们又没有提升写操作的优先级,那么就会产生“饥饿”现象。请求写操作的线程会一直阻塞,直到所有的读线程都从ReadWriteLock上解锁了。如果一直保证新线程的读操作权限,那么等待写操作的线程就会一直阻塞下去,结果就是发生“饥饿”。因此,只有当没有线程正在锁住ReadWriteLock进行写操作,且没有线程请求该锁准备执行写操作时,才能保证读操作继续。
当其它线程没有对共享资源进行读操作或者写操作时,某个线程就有可能获得该共享资源的写锁,进而对共享资源进行写操作。有多少线程请求了写锁以及以何种顺序请求写锁并不重要,除非你想保证写锁请求的公平性。
按照上面的叙述,简单的实现出一个读/写锁,代码如下
写锁的实现在lockWrite()中,当一个线程想获得写锁的时候,首先会把写锁请求数加1(writeRequests++),然后再去判断是否能够真能获得写锁,当没有线程持有读锁(readers==0 ),且没有线程持有写锁(writers==0)时就能获得写锁。有多少线程在请求写锁并无关系。
需要注意的是,在两个释放锁的方法(unlockRead,unlockWrite)中,都调用了notifyAll方法,而不是notify。要解释这个原因,我们可以想象下面一种情形:
如果有线程在等待获取读锁,同时又有线程在等待获取写锁。如果这时其中一个等待读锁的线程被notify方法唤醒,但因为此时仍有请求写锁的线程存在(writeRequests>0),所以被唤醒的线程会再次进入阻塞状态。然而,等待写锁的线程一个也没被唤醒,就像什么也没发生过一样(译者注:信号丢失现象)。如果用的是notifyAll方法,所有的线程都会被唤醒,然后判断能否获得其请求的锁。
用notifyAll还有一个好处。如果有多个读线程在等待读锁且没有线程在等待写锁时,调用unlockWrite()后,所有等待读锁的线程都能立马成功获取读锁 —— 而不是一次只允许一个。
读/写锁的重入
上面实现的读/写锁(ReadWriteLock) 是不可重入的,当一个已经持有写锁的线程再次请求写锁时,就会被阻塞。原因是已经有一个写线程了——就是它自己。此外,考虑下面的例子:
1. Thread 1 获得了读锁
2. Thread 2 请求写锁,但因为Thread 1 持有了读锁,所以写锁请求被阻塞。
3. Thread 1 再想请求一次读锁,但因为Thread 2处于请求写锁的状态,所以想再次获取读锁也会被阻塞。
上面这种情形使用前面的ReadWriteLock就会被锁定——一种类似于死锁的情形。不会再有线程能够成功获取读锁或写锁了。
为了让ReadWriteLock可重入,需要对它做一些改进。下面会分别处理读锁的重入和写锁的重入。
读锁重入
为了让ReadWriteLock的读锁可重入,我们要先为读锁重入建立规则:
• 要保证某个线程中的读锁可重入,要么满足获取读锁的条件(没有写或写请求),要么已经持有读锁(不管是否有写请求)。
要确定一个线程是否已经持有读锁,可以用一个map来存储已经持有读锁的线程以及对应线程获取读锁的次数,当需要判断某个线程能否获得读锁时,就利用map中存储的数据进行判断。下面是方法lockRead和unlockRead修改后的的代码:
代码中我们可以看到,只有在没有线程拥有写锁的情况下才允许读锁的重入。此外,重入的读锁比写锁优先级高。
写锁重入
仅当一个线程已经持有写锁,才允许写锁重入(再次获得写锁)。下面是方法lockWrite和unlockWrite修改后的的代码。
注意在确定当前线程是否能够获取写锁的时候,是如何处理的。
读锁升级到写锁
有时,我们希望一个拥有读锁的线程,也能获得写锁。想要允许这样的操作,要求这个线程是唯一一个拥有读锁的线程。writeLock()需要做点改动来达到这个目的:
现在ReadWriteLock类就可以从读锁升级到写锁了
写锁降级到读锁
有时拥有写锁的线程也希望得到读锁。如果一个线程拥有了写锁,那么自然其它线程是不可能拥有读锁或写锁了。所以对于一个拥有写锁的线程,再获得读锁,是不会有什么危险的。我们仅仅需要对上面canGrantReadAccess方法进行简单地修改:
在finally中调用unlock()
在利用ReadWriteLock来保护临界区时,如果临界区可能抛出异常,在finally块中调用readUnlock()和writeUnlock()就显得很重要了。这样做是为了保证ReadWriteLock能被成功解锁,然后其它线程可以请求到该锁。这里有个例子:
1 lock.lockWrite();
2 try{
3 //do critical section code, which may throw exception
4 } finally {
5 lock.unlockWrite();
6 }
上面这样的代码结构能够保证临界区中抛出异常时ReadWriteLock也会被释放。如果unlockWrite方法不是在finally块中调用的,当临界区抛出了异常时,ReadWriteLock 会一直保持在写锁定状态,就会导致所有调用lockRead()或lockWrite()的线程一直阻塞。唯一能够重新解锁ReadWriteLock的因素可能就是ReadWriteLock是可重入的,当抛出异常时,这个线程后续还可以成功获取这把锁,然后执行临界区以及再次调用unlockWrite(),这就会再次释放ReadWriteLock。但是如果该线程后续不再获取这把锁了呢?所以,在finally中调用unlockWrite对写出健壮代码是很重要的
JDK提供了读写锁--ReadWriteLock接口及其实现类ReentrantReadWriteLock
ReentrantReadWriteLock中定义了2个内部类, ReentrantReadWriteLock.ReadLock和ReentrantReadWriteLock.WriteLock, 分别用来代表读取锁和写入锁. ReentrantReadWriteLock对象提供了readLock()和writeLock()方法, 用于获取读取锁和写入锁.
读取锁允许多个reader线程同时持有, 而写入锁最多只能有一个writter线程持有.
读写锁的使用场合: 读取共享数据的频率远大于修改共享数据的频率. 在上述场合下, 使用读写锁控制共享资源的访问, 可以提高并发性能.
如果一个线程已经持有了写入锁, 则可以再持有读写锁. 相反, 如果一个线程已经持有了读取锁, 则在释放该读取锁之前, 不能再持有写入锁.
可以调用写入锁的newCondition()方法获取与该写入锁绑定的Condition对象, 此时与普通的互斥锁并没有什么区别. 但是调用读取锁的newCondition()方法将抛出异常.
6、互斥锁
互斥锁和信号量都是操作系统中为并发编程设计基本概念,互斥锁和信号量的概念上的不同在于,对于同一个资源,互斥锁只有0和1 的概念,而信号量不止于此。也就是说,信号量可以使资源同时被多个线程访问,而互斥锁同时只能被一个线程访问
互斥锁在Java中的实现就是 ReetranLock , 在访问一个同步资源时,它的对象需要通过方法 tryLock() 获得这个锁,如果失败,返回 false,成功返回true。根据返回的信息来判断是否要访问这个被同步的资源。看下面的例子
7、信号量
信号量相当于一个计数器,如果线程想要访问某个资源,则先要获得这个资源的信号量,并且信号量内部的计数器减1 ,信号量内部的计数器大于0则意味着有可以使用的资源,当线程使用完某个资源时,必须释放这个资源的信号量。信号量的一个作用就是可以实现指定个线程去同事访问某个资源。只需要在初始化 。
信号量在 Java中的实现是 Semaphore ,其在初始化时传入一个整型数, 用来指定同步资源最大的并发访问量
8.闭锁
CountDownLatch 实现一个等待机制,在诸如 等待与会者到达后,开始会议的使用中。ConutDownLatch 在初始化中一个计数器,用来指定需要等待的个数。在并发编程中,所解决的需求就是,等待所有的线程到达某个点后。才开始进行下一步,有点类似于开会,只有当所有的与会人员都到齐后,会议才能开始
锁5转自并发编程网- http://ifeve.com/read-write-locks/#simple
相比Java中的锁(Locks in Java)里Lock实现,读写锁更复杂一些。假设你的程序中涉及到对一些共享资源的读和写操作,且写操作没有读操作那么频繁。在没有写操作的时候,两个线程同时读一个资源没有任何问题,所以应该允许多个线程能在同时读取共享资源。但是如果有一个线程想去写这些共享资源,就不应该再有其它线程对该资源进行读或写(译者注:也就是说:读-读能共存,读-写不能共存,写-写不能共存)。这就需要一个读/写锁来解决这个问题。
Java在java.util.concurrent包中已经包含了读写锁。尽管如此,我们还是应该了解其实现背后的原理。
读/写锁的Java实现
先让我们对读写访问资源的条件做个概述:
读取 没有线程正在做写操作,且没有线程在请求写操作。
写入 没有线程正在做读写操作。
如果某个线程想要读取资源,只要没有线程正在对该资源进行写操作且没有线程请求对该资源的写操作即可。我们假设对写操作的请求比对读操作的请求更重要,就要提升写请求的优先级。此外,如果读操作发生的比较频繁,我们又没有提升写操作的优先级,那么就会产生“饥饿”现象。请求写操作的线程会一直阻塞,直到所有的读线程都从ReadWriteLock上解锁了。如果一直保证新线程的读操作权限,那么等待写操作的线程就会一直阻塞下去,结果就是发生“饥饿”。因此,只有当没有线程正在锁住ReadWriteLock进行写操作,且没有线程请求该锁准备执行写操作时,才能保证读操作继续。
当其它线程没有对共享资源进行读操作或者写操作时,某个线程就有可能获得该共享资源的写锁,进而对共享资源进行写操作。有多少线程请求了写锁以及以何种顺序请求写锁并不重要,除非你想保证写锁请求的公平性。
按照上面的叙述,简单的实现出一个读/写锁,代码如下
写锁的实现在lockWrite()中,当一个线程想获得写锁的时候,首先会把写锁请求数加1(writeRequests++),然后再去判断是否能够真能获得写锁,当没有线程持有读锁(readers==0 ),且没有线程持有写锁(writers==0)时就能获得写锁。有多少线程在请求写锁并无关系。
需要注意的是,在两个释放锁的方法(unlockRead,unlockWrite)中,都调用了notifyAll方法,而不是notify。要解释这个原因,我们可以想象下面一种情形:
如果有线程在等待获取读锁,同时又有线程在等待获取写锁。如果这时其中一个等待读锁的线程被notify方法唤醒,但因为此时仍有请求写锁的线程存在(writeRequests>0),所以被唤醒的线程会再次进入阻塞状态。然而,等待写锁的线程一个也没被唤醒,就像什么也没发生过一样(译者注:信号丢失现象)。如果用的是notifyAll方法,所有的线程都会被唤醒,然后判断能否获得其请求的锁。
用notifyAll还有一个好处。如果有多个读线程在等待读锁且没有线程在等待写锁时,调用unlockWrite()后,所有等待读锁的线程都能立马成功获取读锁 —— 而不是一次只允许一个。
读/写锁的重入
上面实现的读/写锁(ReadWriteLock) 是不可重入的,当一个已经持有写锁的线程再次请求写锁时,就会被阻塞。原因是已经有一个写线程了——就是它自己。此外,考虑下面的例子:
1. Thread 1 获得了读锁
2. Thread 2 请求写锁,但因为Thread 1 持有了读锁,所以写锁请求被阻塞。
3. Thread 1 再想请求一次读锁,但因为Thread 2处于请求写锁的状态,所以想再次获取读锁也会被阻塞。
上面这种情形使用前面的ReadWriteLock就会被锁定——一种类似于死锁的情形。不会再有线程能够成功获取读锁或写锁了。
为了让ReadWriteLock可重入,需要对它做一些改进。下面会分别处理读锁的重入和写锁的重入。
读锁重入
为了让ReadWriteLock的读锁可重入,我们要先为读锁重入建立规则:
• 要保证某个线程中的读锁可重入,要么满足获取读锁的条件(没有写或写请求),要么已经持有读锁(不管是否有写请求)。
要确定一个线程是否已经持有读锁,可以用一个map来存储已经持有读锁的线程以及对应线程获取读锁的次数,当需要判断某个线程能否获得读锁时,就利用map中存储的数据进行判断。下面是方法lockRead和unlockRead修改后的的代码:
代码中我们可以看到,只有在没有线程拥有写锁的情况下才允许读锁的重入。此外,重入的读锁比写锁优先级高。
写锁重入
仅当一个线程已经持有写锁,才允许写锁重入(再次获得写锁)。下面是方法lockWrite和unlockWrite修改后的的代码。
注意在确定当前线程是否能够获取写锁的时候,是如何处理的。
读锁升级到写锁
有时,我们希望一个拥有读锁的线程,也能获得写锁。想要允许这样的操作,要求这个线程是唯一一个拥有读锁的线程。writeLock()需要做点改动来达到这个目的:
现在ReadWriteLock类就可以从读锁升级到写锁了
写锁降级到读锁
有时拥有写锁的线程也希望得到读锁。如果一个线程拥有了写锁,那么自然其它线程是不可能拥有读锁或写锁了。所以对于一个拥有写锁的线程,再获得读锁,是不会有什么危险的。我们仅仅需要对上面canGrantReadAccess方法进行简单地修改:
在finally中调用unlock()
在利用ReadWriteLock来保护临界区时,如果临界区可能抛出异常,在finally块中调用readUnlock()和writeUnlock()就显得很重要了。这样做是为了保证ReadWriteLock能被成功解锁,然后其它线程可以请求到该锁。这里有个例子:
1 lock.lockWrite();
2 try{
3 //do critical section code, which may throw exception
4 } finally {
5 lock.unlockWrite();
6 }
上面这样的代码结构能够保证临界区中抛出异常时ReadWriteLock也会被释放。如果unlockWrite方法不是在finally块中调用的,当临界区抛出了异常时,ReadWriteLock 会一直保持在写锁定状态,就会导致所有调用lockRead()或lockWrite()的线程一直阻塞。唯一能够重新解锁ReadWriteLock的因素可能就是ReadWriteLock是可重入的,当抛出异常时,这个线程后续还可以成功获取这把锁,然后执行临界区以及再次调用unlockWrite(),这就会再次释放ReadWriteLock。但是如果该线程后续不再获取这把锁了呢?所以,在finally中调用unlockWrite对写出健壮代码是很重要的
JDK提供了读写锁--ReadWriteLock接口及其实现类ReentrantReadWriteLock
ReentrantReadWriteLock中定义了2个内部类, ReentrantReadWriteLock.ReadLock和ReentrantReadWriteLock.WriteLock, 分别用来代表读取锁和写入锁. ReentrantReadWriteLock对象提供了readLock()和writeLock()方法, 用于获取读取锁和写入锁.
读取锁允许多个reader线程同时持有, 而写入锁最多只能有一个writter线程持有.
读写锁的使用场合: 读取共享数据的频率远大于修改共享数据的频率. 在上述场合下, 使用读写锁控制共享资源的访问, 可以提高并发性能.
如果一个线程已经持有了写入锁, 则可以再持有读写锁. 相反, 如果一个线程已经持有了读取锁, 则在释放该读取锁之前, 不能再持有写入锁.
可以调用写入锁的newCondition()方法获取与该写入锁绑定的Condition对象, 此时与普通的互斥锁并没有什么区别. 但是调用读取锁的newCondition()方法将抛出异常.
6、互斥锁
互斥锁和信号量都是操作系统中为并发编程设计基本概念,互斥锁和信号量的概念上的不同在于,对于同一个资源,互斥锁只有0和1 的概念,而信号量不止于此。也就是说,信号量可以使资源同时被多个线程访问,而互斥锁同时只能被一个线程访问
互斥锁在Java中的实现就是 ReetranLock , 在访问一个同步资源时,它的对象需要通过方法 tryLock() 获得这个锁,如果失败,返回 false,成功返回true。根据返回的信息来判断是否要访问这个被同步的资源。看下面的例子
7、信号量
信号量相当于一个计数器,如果线程想要访问某个资源,则先要获得这个资源的信号量,并且信号量内部的计数器减1 ,信号量内部的计数器大于0则意味着有可以使用的资源,当线程使用完某个资源时,必须释放这个资源的信号量。信号量的一个作用就是可以实现指定个线程去同事访问某个资源。只需要在初始化 。
信号量在 Java中的实现是 Semaphore ,其在初始化时传入一个整型数, 用来指定同步资源最大的并发访问量
8.闭锁
CountDownLatch 实现一个等待机制,在诸如 等待与会者到达后,开始会议的使用中。ConutDownLatch 在初始化中一个计数器,用来指定需要等待的个数。在并发编程中,所解决的需求就是,等待所有的线程到达某个点后。才开始进行下一步,有点类似于开会,只有当所有的与会人员都到齐后,会议才能开始
锁5转自并发编程网- http://ifeve.com/read-write-locks/#simple
发表评论
-
Netty学习
2018-01-16 13:22 011111 -
java性能优化
2017-08-07 22:08 01111111 -
设计模式(四)
2017-07-30 18:30 41513.访问者模式 访问者模式也称为Visitor模式,使用这种 ... -
java多线程模式(二)
2017-07-18 22:05 01.Thread Specific Storage (线 ... -
java多线程模式(一)
2017-07-18 22:00 3891.Immutable Object (不可变对象) 模式 ... -
java多线程(十)
2017-07-13 23:14 0多线程分析监控调优工具 -
java多线程(八)
2017-07-13 22:54 44614、对象锁 1. 对象锁 所有对象都自动含有单 ... -
java多线程(七)
2017-07-12 23:54 1616目前在Java中存在两种锁 ... -
java多线程(六)
2017-07-11 23:32 4579、悲观锁 悲 ... -
java源码学习(一)
2017-08-07 22:07 396AtomicBoolean源码分析 Java不能直接访问操作 ... -
java多线程(四)
2017-07-09 16:13 454锁 java 多线程的锁我是 ... -
java多线程(三)
2017-07-08 23:30 358线程状态转化图 这 ... -
java多线程(二)
2017-07-03 23:18 490上节说到final、volatile、synchronized ... -
java多线程(一)
2017-07-03 23:17 418很多人都对其中的一些 ...
相关推荐
Java多线程设计模式上传文件Java多线程设计模式上传文件Java多线程设计模式上传文件Java多线程设计模式上传文件Java多线程设计模式上传文件Java多线程设计模式上传文件Java多线程设计模式上传文件Java多线程设计模式...
Java多线程读大文件 java多线程写文件:多线程往队列中写入数据
### Java多线程操作数据库:深入解析与应用 在当今高度并发的应用环境中,Java多线程技术被广泛应用于处理数据库操作,以提升系统的响应速度和处理能力。本文将基于一个具体的Java多线程操作数据库的应用程序,深入...
java多线程PPT 多线程基本概念 创建线程的方式 线程的挂起与唤醒 多线程问题
Java多线程是Java编程语言中一个非常重要的概念,它允许开发者在一个程序中创建多个执行线程并行运行,以提高程序的执行效率和响应速度。在Java中,线程的生命周期包含五个基本状态,分别是新建状态(New)、就绪...
Java多线程是Java编程中的重要概念,尤其在如今的多核处理器环境下,理解并熟练掌握多线程技术对于提高程序性能和响应速度至关重要。本资料详细讲解了Java多线程的原理,并提供了丰富的实战代码,非常适合Java初学者...
Java多线程是Java编程中的重要概念,它允许程序同时执行多个任务,极大地提升了程序的效率和性能。在Java中,实现多线程有两种主要方式:通过实现Runnable接口或者继承Thread类。本案例将深入探讨Java多线程中的关键...
Java多线程是Java编程中的一个重要概念,它允许程序同时执行多个任务,提高了程序的效率和响应速度。在Java中,实现多线程有两种主要方式:继承Thread类和实现Runnable接口。 1. 继承Thread类: 当我们创建一个新...
### Java多线程分页查询知识点详解 #### 一、背景与需求分析 在实际的软件开发过程中,尤其是在处理大量数据时,如何高效地进行数据查询成为了一个关键问题。例如,在一个用户众多的社交平台上,当用户需要查看...
《汪文君JAVA多线程编程实战》是一本专注于Java多线程编程的实战教程,由知名讲师汪文君倾力打造。这本书旨在帮助Java开发者深入理解和熟练掌握多线程编程技术,提升软件开发的效率和质量。在Java平台中,多线程是...
在Java编程中,多线程处理是提升程序性能和效率的重要手段,特别是在处理大量数据库数据时。本主题将深入探讨如何使用Java的并发包(java.util.concurrent)来实现多线程对数据库数据的批量处理,包括增、删、改等...
综上所述,"java多线程查询数据库"是一个涉及多线程技术、线程池管理、并发控制、分页查询等多个方面的复杂问题。通过理解和掌握这些知识点,我们可以有效地提高数据库操作的效率和系统的响应速度。
在本文中,我们将深入浅出Java多线程编程的世界,探索多线程编程的基本概念、多线程编程的优点、多线程编程的缺点、多线程编程的应用场景、多线程编程的实现方法等内容。 一、多线程编程的基本概念 多线程编程是指...
在Java编程中,多线程并发是提升程序执行效率、充分利用多核处理器资源的重要手段。本文将基于"java 多线程并发实例"这个主题,深入探讨Java中的多线程并发概念及其应用。 首先,我们要了解Java中的线程。线程是...
JAVA多线程练习题答案详解 在本文中,我们将对 JAVA 多线程练习题的答案进行详细的解释和分析。这些题目涵盖了 JAVA 多线程编程的基本概念和技术,包括线程的生命周期、线程同步、线程状态、线程优先级、线程安全等...
《JAVA多线程教学演示系统》是一篇深入探讨JAVA多线程编程的论文,它针对教育领域中的教学需求,提供了一种生动、直观的演示方式,帮助学生更好地理解和掌握多线程技术。这篇论文的核心内容可能包括以下几个方面: ...
Java多线程编程是Java开发中的重要组成部分,它允许程序同时执行多个任务,极大地提高了程序的效率和响应性。在Java中,多线程主要通过继承Thread类或实现Runnable接口来实现。本教程《Java多线程编程核心技术》将...
### JAVA中的单线程与多线程概念解析 #### 单线程的理解 在Java编程环境中,单线程指的是程序执行过程中只有一个线程在运行。这意味着任何时刻只能执行一个任务,上一个任务完成后才会进行下一个任务。单线程模型...
这份“JAVA多线程编程技术PDF”是学习和掌握这一领域的经典资料,涵盖了多线程的全部知识点。 首先,多线程的核心概念包括线程的创建与启动。在Java中,可以通过实现Runnable接口或继承Thread类来创建线程。创建后...
本项目以"java多线程实现大批量数据导入源码"为题,旨在通过多线程策略将大量数据切分,并进行并行处理,以提高数据处理速度。 首先,我们需要理解Java中的线程机制。Java通过`Thread`类来创建和管理线程。每个线程...