`
字母哥
  • 浏览: 70146 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

spark源码分析之SparkContext初始化一

 
阅读更多
基于standalone模式

这里,我们主要关注最主要的2个地方的初始化,首先是TaskScheduler的创建初始化。
// Create and start the scheduler
    val (sched, ts) = SparkContext.createTaskScheduler(this, master)
    _schedulerBackend = sched
    _taskScheduler = ts
    _dagScheduler = new DAGScheduler(this)
    _heartbeatReceiver.ask[Boolean](TaskSchedulerIsSet)

这里我们发现还会初始化SchedulerBackend,这里我们继续看createTaskScheduler方法
case SPARK_REGEX(sparkUrl) =>
        val scheduler = new TaskSchedulerImpl(sc)
        val masterUrls = sparkUrl.split(",").map("spark://" + _)
        val backend = new SparkDeploySchedulerBackend(scheduler, sc, masterUrls)
        scheduler.initialize(backend)
        (backend, scheduler)

首先创建TaskSchedulerImpl,里面有2个比较重要的变量
// Listener object to pass upcalls into
  var dagScheduler: DAGScheduler = null
  var backend: SchedulerBackend = null

然后看创建SparkDeploySchedulerBackend,最主要的方法在下面,因为会之后的程序会调用这个方法
override def start() {
    super.start()
    // The endpoint for executors to talk to us
    val driverUrl = rpcEnv.uriOf(SparkEnv.driverActorSystemName,
      RpcAddress(sc.conf.get("spark.driver.host"), sc.conf.get("spark.driver.port").toInt),
      CoarseGrainedSchedulerBackend.ENDPOINT_NAME)
    val args = Seq(
      "--driver-url", driverUrl,
      "--executor-id", "{{EXECUTOR_ID}}",
      "--hostname", "{{HOSTNAME}}",
      "--cores", "{{CORES}}",
      "--app-id", "{{APP_ID}}",
      "--worker-url", "{{WORKER_URL}}")
    val extraJavaOpts = sc.conf.getOption("spark.executor.extraJavaOptions")
      .map(Utils.splitCommandString).getOrElse(Seq.empty)
    val classPathEntries = sc.conf.getOption("spark.executor.extraClassPath")
      .map(_.split(java.io.File.pathSeparator).toSeq).getOrElse(Nil)
    val libraryPathEntries = sc.conf.getOption("spark.executor.extraLibraryPath")
      .map(_.split(java.io.File.pathSeparator).toSeq).getOrElse(Nil)
    // When testing, expose the parent class path to the child. This is processed by
    // compute-classpath.{cmd,sh} and makes all needed jars available to child processes
    // when the assembly is built with the "*-provided" profiles enabled.
    val testingClassPath =
      if (sys.props.contains("spark.testing")) {
        sys.props("java.class.path").split(java.io.File.pathSeparator).toSeq
      } else {
        Nil
      }
    // Start executors with a few necessary configs for registering with the scheduler
    val sparkJavaOpts = Utils.sparkJavaOpts(conf, SparkConf.isExecutorStartupConf)
    val javaOpts = sparkJavaOpts ++ extraJavaOpts
    val command = Command("org.apache.spark.executor.CoarseGrainedExecutorBackend",
      args, sc.executorEnvs, classPathEntries ++ testingClassPath, libraryPathEntries, javaOpts)
    val appUIAddress = sc.ui.map(_.appUIAddress).getOrElse("")
    val coresPerExecutor = conf.getOption("spark.executor.cores").map(_.toInt)
    val appDesc = new ApplicationDescription(sc.appName, maxCores, sc.executorMemory,
      command, appUIAddress, sc.eventLogDir, sc.eventLogCodec, coresPerExecutor)
    client = new AppClient(sc.env.rpcEnv, masters, appDesc, this, conf)
    client.start()
    waitForRegistration()
  }

首先会调用父类的start方法
  override def start() {
    val properties = new ArrayBuffer[(String, String)]
    for ((key, value) <- scheduler.sc.conf.getAll) {
      if (key.startsWith("spark.")) {
        properties += ((key, value))
      }
    }
    // TODO (prashant) send conf instead of properties
    driverEndpoint = rpcEnv.setupEndpoint(
      CoarseGrainedSchedulerBackend.ENDPOINT_NAME, new DriverEndpoint(rpcEnv, properties))
  }

主要是创建了driver的代理对象,可以给driver发送消息的对象。回到上面的start方法,主要是
client = new AppClient(sc.env.rpcEnv, masters, appDesc, this, conf)
client.start()

直接找到这个start方法
def start() {
    // Just launch an rpcEndpoint; it will call back into the listener.
    endpoint = rpcEnv.setupEndpoint("AppClient", new ClientEndpoint(rpcEnv))
  }

就是创建了一个代理对象,看下这个代理对象
private class ClientEndpoint(override val rpcEnv: RpcEnv) extends ThreadSafeRpcEndpoint
    with Logging {
    private var master: Option[RpcEndpointRef] = None
    // To avoid calling listener.disconnected() multiple times
    private var alreadyDisconnected = false
    @volatile private var alreadyDead = false // To avoid calling listener.dead() multiple times
    @volatile private var registerMasterFutures: Array[JFuture[_]] = null
    @volatile private var registrationRetryTimer: JScheduledFuture[_] = null
    // A thread pool for registering with masters. Because registering with a master is a blocking
    // action, this thread pool must be able to create "masterRpcAddresses.size" threads at the same
    // time so that we can register with all masters.
    private val registerMasterThreadPool = ThreadUtils.newDaemonCachedThreadPool(
      "appclient-register-master-threadpool",
      masterRpcAddresses.length // Make sure we can register with all masters at the same time
    )
    // A scheduled executor for scheduling the registration actions
    private val registrationRetryThread =
      ThreadUtils.newDaemonSingleThreadScheduledExecutor("appclient-registration-retry-thread")
    override def onStart(): Unit = {
      try {
        registerWithMaster(1)
      } catch {
        case e: Exception =>
          logWarning("Failed to connect to master", e)
          markDisconnected()
          stop()
      }
    }
    /**
     *  Register with all masters asynchronously and returns an array `Future`s for cancellation.
     */
    private def tryRegisterAllMasters(): Array[JFuture[_]] = {
      for (masterAddress <- masterRpcAddresses) yield {
        registerMasterThreadPool.submit(new Runnable {
          override def run(): Unit = try {
            if (registered) {
              return
            }
            logInfo("Connecting to master " + masterAddress.toSparkURL + "...")
            val masterRef =
              rpcEnv.setupEndpointRef(Master.SYSTEM_NAME, masterAddress, Master.ENDPOINT_NAME)
            masterRef.send(RegisterApplication(appDescription, self))
          } catch {
            case ie: InterruptedException => // Cancelled
            case NonFatal(e) => logWarning(s"Failed to connect to master $masterAddress", e)
          }
        })
      }
    }
    /**
     * Register with all masters asynchronously. It will call `registerWithMaster` every
     * REGISTRATION_TIMEOUT_SECONDS seconds until exceeding REGISTRATION_RETRIES times.
     * Once we connect to a master successfully, all scheduling work and Futures will be cancelled.
     *
     * nthRetry means this is the nth attempt to register with master.
     */
    private def registerWithMaster(nthRetry: Int) {
      registerMasterFutures = tryRegisterAllMasters()
      registrationRetryTimer = registrationRetryThread.scheduleAtFixedRate(new Runnable {
        override def run(): Unit = {
          Utils.tryOrExit {
            if (registered) {
              registerMasterFutures.foreach(_.cancel(true))
              registerMasterThreadPool.shutdownNow()
            } else if (nthRetry >= REGISTRATION_RETRIES) {
              markDead("All masters are unresponsive! Giving up.")
            } else {
              registerMasterFutures.foreach(_.cancel(true))
              registerWithMaster(nthRetry + 1)
            }
          }
        }
      }, REGISTRATION_TIMEOUT_SECONDS, REGISTRATION_TIMEOUT_SECONDS, TimeUnit.SECONDS)
    }
    /**
     * Send a message to the current master. If we have not yet registered successfully with any
     * master, the message will be dropped.
     */
    private def sendToMaster(message: Any): Unit = {
      master match {
        case Some(masterRef) => masterRef.send(message)
        case None => logWarning(s"Drop $message because has not yet connected to master")
      }
    }
    private def isPossibleMaster(remoteAddress: RpcAddress): Boolean = {
      masterRpcAddresses.contains(remoteAddress)
    }
    override def receive: PartialFunction[Any, Unit] = {
      case RegisteredApplication(appId_, masterRef) =>
        // FIXME How to handle the following cases?
        // 1. A master receives multiple registrations and sends back multiple
        // RegisteredApplications due to an unstable network.
        // 2. Receive multiple RegisteredApplication from different masters because the master is
        // changing.
        appId = appId_
        registered = true
        master = Some(masterRef)
        listener.connected(appId)
      case ApplicationRemoved(message) =>
        markDead("Master removed our application: %s".format(message))
        stop()
      case ExecutorAdded(id: Int, workerId: String, hostPort: String, cores: Int, memory: Int) =>
        val fullId = appId + "/" + id
        logInfo("Executor added: %s on %s (%s) with %d cores".format(fullId, workerId, hostPort,
          cores))
        // FIXME if changing master and `ExecutorAdded` happen at the same time (the order is not
        // guaranteed), `ExecutorStateChanged` may be sent to a dead master.
        sendToMaster(ExecutorStateChanged(appId, id, ExecutorState.RUNNING, None, None))
        listener.executorAdded(fullId, workerId, hostPort, cores, memory)
      case ExecutorUpdated(id, state, message, exitStatus) =>
        val fullId = appId + "/" + id
        val messageText = message.map(s => " (" + s + ")").getOrElse("")
        logInfo("Executor updated: %s is now %s%s".format(fullId, state, messageText))
        if (ExecutorState.isFinished(state)) {
          listener.executorRemoved(fullId, message.getOrElse(""), exitStatus)
        }
      case MasterChanged(masterRef, masterWebUiUrl) =>
        logInfo("Master has changed, new master is at " + masterRef.address.toSparkURL)
        master = Some(masterRef)
        alreadyDisconnected = false
        masterRef.send(MasterChangeAcknowledged(appId))
    }
    override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
      case StopAppClient =>
        markDead("Application has been stopped.")
        sendToMaster(UnregisterApplication(appId))
        context.reply(true)
        stop()
      case r: RequestExecutors =>
        master match {
          case Some(m) => context.reply(m.askWithRetry[Boolean](r))
          case None =>
            logWarning("Attempted to request executors before registering with Master.")
            context.reply(false)
        }
      case k: KillExecutors =>
        master match {
          case Some(m) => context.reply(m.askWithRetry[Boolean](k))
          case None =>
            logWarning("Attempted to kill executors before registering with Master.")
            context.reply(false)
        }
    }
    override def onDisconnected(address: RpcAddress): Unit = {
      if (master.exists(_.address == address)) {
        logWarning(s"Connection to $address failed; waiting for master to reconnect...")
        markDisconnected()
      }
    }
    override def onNetworkError(cause: Throwable, address: RpcAddress): Unit = {
      if (isPossibleMaster(address)) {
        logWarning(s"Could not connect to $address: $cause")
      }
    }
    /**
     * Notify the listener that we disconnected, if we hadn't already done so before.
     */
    def markDisconnected() {
      if (!alreadyDisconnected) {
        listener.disconnected()
        alreadyDisconnected = true
      }
    }
    def markDead(reason: String) {
      if (!alreadyDead) {
        listener.dead(reason)
        alreadyDead = true
      }
    }
    override def onStop(): Unit = {
      if (registrationRetryTimer != null) {
        registrationRetryTimer.cancel(true)
      }
      registrationRetryThread.shutdownNow()
      registerMasterFutures.foreach(_.cancel(true))
      registerMasterThreadPool.shutdownNow()
    }
  }

因为继承了ThreadSafeRpcEndpoint这个类,也就会依次调用onstart, receive等方法,类似与上一遍博客中akka的生命周期
private[spark] trait ThreadSafeRpcEndpoint extends RpcEndpoint
/**
 * An end point for the RPC that defines what functions to trigger given a message.
 *
 * It is guaranteed that `onStart`, `receive` and `onStop` will be called in sequence.
 *
 * The life-cycle of an endpoint is:
 *
 * constructor -> onStart -> receive* -> onStop
 *
 * Note: `receive` can be called concurrently. If you want `receive` to be thread-safe, please use
 * [[ThreadSafeRpcEndpoint]]
 *
 * If any error is thrown from one of [[RpcEndpoint]] methods except `onError`, `onError` will be
 * invoked with the cause. If `onError` throws an error, [[RpcEnv]] will ignore it.

那么会首先调用
override def onStart(): Unit = {
      try {

        registerWithMaster(1)
      } catch {
        case e: Exception =>
          logWarning("Failed to connect to master", e)
          markDisconnected()
          stop()
      }
    }

直接看registerWithMaster方法,像master注册我们之前封装好的application
 /**
     *  Register with all masters asynchronously and returns an array `Future`s for cancellation.
     */
    private def tryRegisterAllMasters(): Array[JFuture[_]] = {
      for (masterAddress <- masterRpcAddresses) yield {
        registerMasterThreadPool.submit(new Runnable {
          override def run(): Unit = try {
            if (registered) {
              return
            }
            logInfo("Connecting to master " + masterAddress.toSparkURL + "...")
            val masterRef =
              rpcEnv.setupEndpointRef(Master.SYSTEM_NAME, masterAddress, Master.ENDPOINT_NAME)
            masterRef.send(RegisterApplication(appDescription, self))
          } catch {
            case ie: InterruptedException => // Cancelled
            case NonFatal(e) => logWarning(s"Failed to connect to master $masterAddress", e)
          }
        })
      }
    }

会调用master的代理对象,然后调用send方法,send方法实际就是底层调用akka方法,这里我们可以先看下,找到这个AkkaRpcEnv 这个类,看下面的方法,也就是上面调用的setupEndpointRef方法
override def setupEndpoint(name: String, endpoint: RpcEndpoint): RpcEndpointRef = {
    @volatile var endpointRef: AkkaRpcEndpointRef = null
    // Use lazy because the Actor needs to use `endpointRef`.
    // So `actorRef` should be created after assigning `endpointRef`.
    lazy val actorRef = actorSystem.actorOf(Props(new Actor with ActorLogReceive with Logging {
      assert(endpointRef != null)
      override def preStart(): Unit = {
        // Listen for remote client network events
        context.system.eventStream.subscribe(self, classOf[AssociationEvent])
        safelyCall(endpoint) {
          endpoint.onStart()
        }
      }
      override def receiveWithLogging: Receive = {
        case AssociatedEvent(_, remoteAddress, _) =>
          safelyCall(endpoint) {
            endpoint.onConnected(akkaAddressToRpcAddress(remoteAddress))
          }
        case DisassociatedEvent(_, remoteAddress, _) =>
          safelyCall(endpoint) {
            endpoint.onDisconnected(akkaAddressToRpcAddress(remoteAddress))
          }
        case AssociationErrorEvent(cause, localAddress, remoteAddress, inbound, _) =>
          safelyCall(endpoint) {
            endpoint.onNetworkError(cause, akkaAddressToRpcAddress(remoteAddress))
          }
        case e: AssociationEvent =>
          // TODO ignore?
        case m: AkkaMessage =>
          logDebug(s"Received RPC message: $m")
          safelyCall(endpoint) {
            processMessage(endpoint, m, sender)
          }
        case AkkaFailure(e) =>
          safelyCall(endpoint) {
            throw e
          }
        case message: Any => {
          logWarning(s"Unknown message: $message")
        }
      }
      override def postStop(): Unit = {
        unregisterEndpoint(endpoint.self)
        safelyCall(endpoint) {
          endpoint.onStop()
        }
      }
      }), name = name)
    endpointRef = new AkkaRpcEndpointRef(defaultAddress, actorRef, conf, initInConstructor = false)
    registerEndpoint(endpoint, endpointRef)
    // Now actorRef can be created safely
    endpointRef.init()
    endp

注意最后会返回AkkaRpcEndpointRef对象,而这个对象重写了send方法
 override def send(message: Any): Unit = {
    actorRef ! AkkaMessage(message, false)
  }

也就是akka的方法了,很显然。我们回到最初的sparkcontext
// Create and start the scheduler
    val (sched, ts) = SparkContext.createTaskScheduler(this, master)
    _schedulerBackend = sched
    _taskScheduler = ts
    _dagScheduler = new DAGScheduler(this)
    _heartbeatReceiver.ask[Boolean](TaskSchedulerIsSet)
    // start TaskScheduler after taskScheduler sets DAGScheduler reference in DAGScheduler's
    // constructor
    _taskScheduler.start()

其实这个start的方法被调用时,backend才会被启动。才会去master注册application

这里就分析完了,driver向master注册application。下篇博客会继续往后分析注册完后,对资源进行调度,然后分配executor.
0
1
分享到:
评论

相关推荐

    深入理解Spark+核心思想与源码分析

    在源码分析部分,读者会了解到Spark如何通过`SparkContext`初始化,如何调度任务,`Executor`如何执行任务,以及`RDD`的创建、转换和行动操作的实现细节。此外,还会深入到`Shuffle`过程、错误恢复机制、存储策略...

    spark源码结构,源码说明

    例如,`ExamplePlugin`实现了初始化、关闭、卸载等方法,而`ExamplePreference`定义了插件的属性。 5. **其他包**: - `org.jivesoftware`:这部分源码主要与Openfire项目相关,Openfire是一个基于Spark即时通讯...

    深入理解Spark 核心思想与源码分析

    , 核心设计篇(第3~7章),着重讲解SparkContext的初始化、存储体系、任务提交与执行、计算引擎及部署模式的原理和源码分析。通过这部分的内容,读者可以通过源码剖析更加深入理解Spark的核心设计与实现,以便在...

    spark初始化源码阅读sparkonyarn的client和cluster区别

    Spark 初始化源码阅读 Spark on YARN 的 Client 和 Cluster 区别 Spark 是一个大数据处理的开源框架,它可以在多种集群管理器上运行,如 YARN、Mesos 和 Standalone。Spark on YARN 是 Spark 在 YARN 集群管理器上...

    深入理解Spark 核心思想与源码分析.pdf

    讲解SparkContext的初始化、存储体系、任务提交与执行、计算引擎及部署模式的原理和源码分析

    Spark源码分析3-The connect between driver,master and excutor

    《Spark源码分析3——驱动器、主节点与执行器之间的连接》 在Spark的分布式计算框架中,驱动器(Driver)、主节点(Master)和执行器(Executor)是核心组件,它们之间的通信和协作构成了Spark作业执行的基础。本文将深入...

    Apache Spark源码走读之3 -- Task运行期之函数调用关系分析

    ### Apache Spark源码走读之3 -- Task运行期之函数调用关系分析 #### 概述 Apache Spark作为一款高效的大数据处理框架,在其内部有着复杂的任务调度与执行机制。本文将深入探讨Spark中Task执行期间的具体流程以及...

    Apache Spark源码读解

    #### SparkContext初始化 - `SparkContext`的创建需要一个`SparkConf`对象作为输入,该对象包含了Spark集群配置的各种参数。 - 在`WordCount`示例中,`SparkConf`对象被用来设置应用名称和主节点地址。 ### spark-...

    深入理解Spark:核心思想与源码分析

     核心设计篇(第3~7章),着重讲解SparkContext的初始化、存储体系、任务提交与执行、计算引擎及部署模式的原理和源码分析。通过这部分的内容,读者可以通过源码剖析更加深入理解Spark的核心设计与实现,以便在...

    spark 高级数据分析 高清 书签

    , 核心设计篇(第3~7章),着重讲解SparkContext的初始化、存储体系、任务提交与执行、计算引擎及部署模式的原理和源码分析。通过这部分的内容,读者可以通过源码剖析更加深入理解Spark的核心设计与实现,以便在...

    Spark-内核源码解析.docx

    在 SparkContext 初始化的过程中被实例化,一个 SparkContext 对应创建一个 DAGScheduler。DAGScheduler 完成以下工作:划分 Stage(TaskSet),记录哪个 RDD 或者 Stage 输出被物化(缓存),重新提交出错/失败的 ...

    Spark2.2版本内核源码深度剖析.zip

    源码分析中会深入探讨如何初始化SparkContext,以及它如何协调执行任务,包括数据分区、RDD创建和持久化等关键操作。 接着,`DAGScheduler`(11-2,DAGScheduler源码分析(stage划分算法、task最佳位置计算算法)....

    Spark(1.6.13)源码

    - **SparkContext的初始化**:如何连接到集群并创建工作环境。 - **RDD的创建与转换**:理解如何定义和操作RDD,以及它们如何在内存和磁盘间移动。 - **Stage与Task的划分**:了解Spark如何将DAG拆分成任务并调度...

    cloudera-spark 官方文档

    1. **初始化**:创建`SparkContext`或`SparkSession`。 2. **数据加载**:从外部系统加载数据,例如HDFS、HBase或其他数据源。 3. **数据转换**:对数据进行转换操作,如map、filter、reduceByKey等。 4. **结果保存...

    spark下的lsvm源码

    `BinaryClassificationMetrics`用于评估模型性能,`MLUtils`提供了一些有用的工具方法来加载和保存数据,以及`SparkConf`和`SparkContext`用于初始化Spark应用程序。 ##### 3.2 初始化Spark上下文 ```scala object ...

Global site tag (gtag.js) - Google Analytics