阅读原文请点击:
http://click.aliyun.com/m/23851/
摘要: 引言:你可能对使用Spark服务比较感兴趣。Spark已经提供了很多功能,也有一个好用的界面,而且背后有强大的社区,开发者十分活跃,这也是人们对Spark寄予厚望的原因。深度学习是当前正在进行中的Spark项目之一。
引言:你可能对使用Spark服务比较感兴趣。Spark已经提供了很多功能,也有一个好用的界面,而且背后有强大的社区,开发者十分活跃,这也是人们对Spark寄予厚望的原因。深度学习是当前正在进行中的Spark项目之一。本文我们将介绍一些Spark能用的深度学习框架。
本文选自《Spark:大数据集群计算的生产实践》。
深度学习因其高准确率及通用性,成为机器学习中最受关注的领域。这种算法在2011—2012年期间出现,并超过了很多竞争对手。最开始,深度学习在音频及图像识别方面取得了成功。此外,像机器翻译之类的自然语言处理或者画图也能使用深度学习算法来完成。深度学习是自1980年以来就开始被使用的一种神经网络。神经网络被看作能进行普适近似(universal approximation)的一种机器。换句话说,这种网络能模仿任何其他函数。例如,深度学习算法能创建一个识别动物图片的函数:给一张动物的图片,它能分辨出图片上的动物是一只猫还是一只狗。深度学习可以看作是组合了许多神经网络的一种深度结构。
与其他已有的机器学习算法相比,深度学习需要大量参数及训练数据。这也是我们介绍能在Spark上运行的深度学习框架的原因。要想在企业环境中稳定地进行深度学习的训练,必须要有一个可靠而快速的分布式引擎。
Spark被视为目前最适合运行深度学习算法的平台,是因为:
基于内存的处理架构对于使用机器学习的迭代计算,特别是深度学习,十分适合。
Spark的几个生态系统如MLlib及Tachyon对于开发深度学习模型很有用。
本文我们将介绍一些Spark能用的深度学习框架。这些框架和深度学习一样,都是比较新的库。很可能你在使用它们的过程中遇到一些bug或者缺少一些操作工具,但是报告问题(issue)及发送补丁将会使它更加成熟。
H2O
H2O是用h2o.ai开发的具有可扩展性的机器学习框架,它不限于深度学习。H2O支持许多API(例如,R、Python、Scala和Java)。当然它是开源软件,所以要研究它的代码及算法也很容易。H2O框架支持所有常见的数据库及文件类型,可以轻松将模型导出为各种类型的存储。深度学习算法是在另一个叫作sparkling-water的库中实现的(http://h2o.ai/product/sparkling-water/)。它主要由h2o.ai开发。要运行sparkling-water,需要使用Spark 1.3或以上的版本。
安装
1.首先需要从h2o网站下载最新的sparking-water。
(http://h2o-release.s3.amazonaws.com/sparkling-water/rel-1.3/1/index.html)
2.把它指向Spark的安装目录。
$ export Spark_HOME=/path/to/your/spark
3.启动sparkling-shell,这个接口与spark-shell类似。
$ cd ~/Downloads
$ unzip Sparkling-water-1.3.1.zip
$ cd Sparkling-water-1.3.1
$ bin/Sparkling-shell
sparkling-water源码中包含几个例子。不幸的是,有些例子在Spark 1.5.2版本上无法正常运行。深度学习的demo也有相同的问题。你得等待这些问题被解决,或者自己写几个能在Spark运行的补丁。
deeplearning4j
deeplearning4j是由Skymind开发的,Skymind是一家致力于为企业进行商业化深度学习的公司。deeplearning4j框架是创建来在Hadoop及Spark上运行的。这个设计用于商业环境而不是许多深度学习框架及库目前所大量应用的研究领域。Skymind是主要的支持者,但deeplearning4j是开源软件,因此也欢迎大家提交补丁。deeplearning4j框架中实现了如下算法:
受限玻尔兹曼机(Restricted Boltzmann Machine)
卷积神经网络(Convolutional Neural Network)
循环神经网络(Recurrent Neural Network)
递归自编码器(Recursive Autoencoder)
深度信念网络(Deep-Belief Network)
深度自编码器(Deep Autoencoder)
栈式降噪自编码(Stacked Denoising Autoencoder)
这里要注意的是,这些模型能在细粒度级别进行配置。你可以设置隐藏的层数、每个神经元的激活函数以及迭代的次数。deeplearning4j提供了不同种类的网络实现及灵活的模型参数。Skymind也开发了许多工具,对于更稳定地运行机器学习算法很有帮助。下面列出了其中的一些工具。
Canova (https://github.com/deeplearning4j/Canoba)是一个向量库。机器学习算法能以向量格式处理所有数据。所有的图片、音频及文本数据必须用某种方法转换为向量。虽然训练机器学习模型是十分常见的工作,但它会重新造轮子还会引起bug。Canova能为你做这种转换。Canova当前支持的输入数据格式为:
-- CSV
--原始文本格式(推文、文档)
--图像(图片、图画)
--定制文件格式(例如MNIST)
由于Canova主要是用Java编写的,所以它能运行在所有的JVM平台上。因此,可以在Spark集群上使用它。即使你不做机器学习,Canova对你的机器学习任务可能也会有所裨益。
nd4j(https://github.com/deeplearning4j/nd4j)**有点像是一个numpy,Python中的SciPy工具。**此工具提供了线性代数、向量计算及操纵之类的科学计算。它也是用Java编写的。你可以根据自己的使用场景来搭配使用这些工具。需要注意的一点是,nd4j支持GPU功能。由于现代计算硬件还在不断发展,有望达到更快速的计算。
dl4j-spark-ml (https://github.com/deeplearning4j/dl4j-spark-ml)**是一个Spark包,使你能在Spark上轻松运行deeplearning4j。**使用这个包,就能轻松在Spark上集成deeplearning4j,因为它已经被上传到了Spark包的公共代码库(http://spark-packages.org/package/deeplearning4j/dl4j-Spark-ml)。
因此,如果你要在Spark上使用deeplearning4j,我们推荐通过dl4j-spark-ml包来实现。与往常一样,必须下载或自己编译Spark源码。这里对Spark版本没有特别要求,就算使用最早的版本也可以。deeplearning4j项目准备了样例存储库。要在Spark上使用deeplearning4j,dl4j-Spark-ml-examples是可参考的最佳示例(https:// github.com/deeplearning4j/dl4j-Spark-ml-examples)。下面列出如何下载及编译这个代码库。
$ git clone git@github.com:deeplearning4j/dl4j-spark-mlexamples.git
$ cd dl4j-Spark-ml-examples
$ mvn clean package -DSpark.version=1.5.2 \
-DHadoop.version=2.6.0
编译类位于target目录下,但是可以通过bin/run-example脚本运行这些例子。当前有三种类型的例子:
ml.JavaIrisClassfication——鸢尾花(iris flower)数据集分类。
ml.JavaLfwClassfication——LFW人脸数据库分类。
ml.JavaMnistClassfication——MNIST手写数据分类。
我们选择第3个例子,对MNIST手写数据集运行分类模型的训练。在运行这个示例之前,需要从MNIST站点下载训练数据(http://yann.lecun.com/exdb/ mnist/)。或者,你可以使用下面的命令下载:
## 下载手写数据的图像
$ wget http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
$ gunzip train-images-idx3-ubyte
## 下载与上述图像对应的标签
$ wget http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
$ gunzip train-labels-idx1-ubyte
And the put the two files on data direcotry under dj4j-spark-ml-examples.
$ mv train-images-idx3-ubyte \
/path/to/dl4j-spark-ml-examples/data
$ mv train-labels-idx1-ubyte \
/path/to/dj4j-spark-ml-examples/data
差不多可以开始运行训练进程了。你需要注意的最后一点是Spark executor及driver的内存大小,因为 MNIST数据集和它的训练模型将会很大。它们要用到大量内存,因此我们建议你提前修改bin/run-example脚本中设置的内存大小。可以通过如下命令修改bin/run-example脚本的最后一行:
exec spark-submit \
--packages "deeplearning4j:dl4j-spark-ml:0.4-rc0" \
--master $EXAMPLE_MASTER \
--class $EXAMPLE_CLASS \
--driver-memory 8G \ # <- Changed from 1G
--executor-memory 8G \ # <- Changed from 4G
"$SPARK_EXAMPLES_JAR" \
"$@"
现在开始训练:
$ MASTER=local[4] bin/run-example ml.JavaMnistClassfication
为了指定本地Spark的master配置,我们已经在bin/run-example脚本的前面设置了MASTER环境变量。这种训练需要花一些时间,由你的环境及机器规格决定。这个例子运行了一种叫作“卷积神经网络”的神经网络。其参数细节是通过MultiLayerConfiguration类设置的。由于deeplearning4j有一个Java接口,就算你不习惯Spark的Scala语言也没关系,它是很容易引入的。下面简单解释一下这个例子中的卷积神经网络参数。
seed——此神经网络会使用像初始网络参数这样的随机参数,这个种子就用于产生这些参数。有了这个种子参数,在开发机器学习模型的过程中更容易进行测试与调试。 batchSize——像递度下降之类的迭代算法,在更新模型之前会汇总一些更新值,batchSize指定进行更新值计算的样本数。
iterations——由一个迭代进程保持模型参数的更新。这个参数决定了此迭代处理的次数。通常来说,迭代越长,收敛的概率越高。
optimizationAlgo——运行前述的迭代进程,必须用到几种方法。随机梯度下降(Stochastic Gradient Descent,SGD)是目前为止最先进的方法,这种方法相对来讲不会落入局部最小值,还能持续搜索全局最小值。
layer——它是深度学习算法的核心配置。这个深度学习神经网络有几个名为layer的网络组。这个参数决定了在每一层中使用哪种类型的层。例如,在卷积神经网络的案例中,ConvolutionLayer被用于从输入的图像中提取出特征。这个层能学习一个给定的图片有哪种类型的特征。在一开始就放置这个层,将改善整个神经网络预测的精确性。每个层也能用给定的参数进行配置。 new ConvolutionLayer.Builder(10, 10) .nIn(nChannels) // 输入元素的数目 .nOut(6) // 输出元素的数目 .weightInit(WeightInit.DISTRIBUTION) // 参数矩阵的初始化方法 .activation("sigmoid") // 激活函数的类型 *build()) 图片描述
上图展现了神经网络的通用结构。由于ConvolutionalLayer也是一种神经网络,两种网络的部件基本上是相同的。神经网络有一个输入(x)及输出(y)。它们都是向量格式的数据。在上图中,输入为一个四维向量,而输出也是一个四维向量。输出向量y是怎样计算出来的呢?每层都有一个参数矩阵。在本例中,它们用W表示。x与W相乘得到下一个向量。为了增强这个模型的表达,这个向量被传给某个非线性激活函数(σ),例如逻辑sigmoid函数(logistic sigmoid function)、Softmax函数。使用这个非线性函数,神经网络就能逼近任意类型的函数。然后用z与另一个参数矩阵W相乘,并再次应用激活函数σ 。
阅读原文请点击:
http://click.aliyun.com/m/23851/
分享到:
相关推荐
星火网用于Spark的分布式神经网络。... 通过运行在EC2上启动一个由5个工人组成的Spark集群 SparkNet/ec2/spark-ec2 --key-pair=key \ --identity-file=key.pem \ --region=eu-west-1 \ --zone=eu-west-1c \ --instan
SparkNet是一个基于Python的小型深度学习库,设计用于学习和理解深度学习框架如TensorFlow和PyTorch的核心机制。在创建自己的深度学习库时,选择numpy作为主要后端是一个有趣的选择,因为numpy是Python中广泛使用的...
从标签“sparknet”我们可以推断出这个项目使用了Spark框架来构建后端服务。Spark提供了简洁的API,使得开发者可以快速编写处理HTTP请求的代码。 压缩包子文件的文件名称列表中,"JSP上传图片并生成缩略图—编程...
TinyYolo2实时视频流物体检测ONNX模型 运行 ONNX 模型,并结合 OpenCV 进行图像处理。具体流程包括: 1. 加载并初始化 ONNX 模型。 2. 从摄像头捕获实时视频流。 3. 对每一帧图像进行模型推理,生成物体检测结果。 4. 在界面上绘制检测结果的边界框和标签。
chromedriver-linux64-134.0.6998.23(Beta).zip
Web开发:ABP框架4-DDD四层架构的详解
chromedriver-linux64-135.0.7029.0(Canary).zip
实现人脸识别的考勤门禁系统可以分为以下步骤: 1. 采集人脸图像数据集:首先需要采集员工的人脸图像数据集,包括正面、侧面等多个角度的图像。可以使用MATLAB中的图像采集工具或者第三方库进行采集。 2. 预处理人脸图像数据:对采集到的人脸图像数据进行预处理,包括人脸检测、人脸对齐、人脸裁剪等操作。MATLAB提供了相关的图像处理工具箱,可以用于实现这些处理步骤。 3. 特征提取与特征匹配:使用人脸识别算法提取人脸图像的特征,比如使用人脸识别中常用的特征提取算法如Eigenfaces、Fisherfaces或者基于深度学习的算法。然后将员工的人脸数据与数据库中的人脸数据进行匹配,判断是否为注册员工。 4. 考勤记录与门禁控制:如果人脸匹配成功,系统可以记录员工的考勤时间,并且控制门禁系统进行开启。MATLAB可以与外部设备进行通信,实现门禁控制以及考勤记录功能。
yugy
企业IT治理体系规划.pptx
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
基于多目标粒子群算法的冷热电联供综合能源系统优化调度与运行策略分析,基于多目标粒子群算法的冷热电联供综合能源系统优化调度与运行策略分析,MATLAB代码:基于多目标粒子群算法冷热电联供综合能源系统运行优化 关键词:综合能源 冷热电三联供 粒子群算法 多目标优化 参考文档:《基于多目标算法的冷热电联供型综合能源系统运行优化》 仿真平台:MATLAB 平台采用粒子群实现求解 优势:代码注释详实,适合参考学习,非目前烂大街的版本,程序非常精品,请仔细辨识 主要内容:代码构建了含冷、热、电负荷的冷热电联供型综合能源系统优化调度模型,考虑了燃气轮机、电制冷机、锅炉以及风光机组等资源,并且考虑与上级电网的购电交易,综合考虑了用户购电购热冷量的成本、CCHP收益以及成本等各种因素,从而实现CCHP系统的经济运行,求解采用的是MOPSO算法(多目标粒子群算法),求解效果极佳,具体可以看图 ,核心关键词: 综合能源系统; 冷热电三联供; 粒子群算法; 多目标优化; MOPSO算法; 优化调度模型; 燃气轮机; 电制冷机; 锅炉; 风光机组; 上级电网购售电交易。,基于多目标粒子群算法的CCHP综合
DSP28379D串口升级方案:单核双核升级与Boot优化,C#上位机开发串口通信方案,DSP28379D串口升级方案:单核双核升级与Boot优化,C#上位机开发实现串口通信,DSP28379D串口升级方案 单核双核升级,boot升级,串口方案。 上位机用c#开发。 ,DSP28379D; 串口升级方案; 单核双核升级; boot升级; 上位机C#开发,DSP28379D串口双核升级方案:Boot串口升级技术使用C#上位机开发
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
基于PLC的双层自动门控制:光电传感触发,有序开关与延时功能实现,附程序、画面及参考文档。,基于PLC的双层自动门控制系统:精准控制,保障无尘环境;门间联动,智能安防新体验。,基于plc的双层自动门控制系统,全部采用博途仿真完成,提供程序,画面,参考文档,详情见图。 实现功能(详见上方演示视频): ① 某房间要求尽可能地保持无尘,在通道上设置了两道电动门,门1和门2,可通过光电传感器自动完成门的打开和关闭。 门1和门2 不能同时打开。 ② 第 1 道门(根据出入方向不同,可能是门 1 或门 2),是由在通道外的开门者通过按开门按钮打开的,而第 2 道门(根据出入方向不同,可能是门 1 或门 2 )则是在打开的第 1 道门关闭后自动地打开的(也可以由通道内的人按开门按钮来打开第2 道门)。 这两道门都是在门开后,经过 3s 的延时而自动关闭的。 ③ 在门关闭期间,如果对应的光电传感器的信号被遮断,则门立即自动打开。 如果在门外或者在门内的开门者按对应的开门按钮时,立即打开。 ④ 出于安全方面的考虑,如果在通道内的某个人经过光电传感器时,对应的门已经打开,则通道外的开门者可以不按开门按钮。
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
DeepSeek+DeepResearch——让科研像聊天一样简单 (1)DeepSeek如何做数据分析? (2)DeepSeek如何分析文件内容? (3)DeepSeek如何进行数据挖掘? (4)DeepSeek如何进行科学研究? (5)DeepSeek如何写综述? (6)DeepSeek如何进行数据可视化? (7)DeepSeek如何写作润色? (8)DeepSeek如何中英文互译? (9)DeepSeek如何做降重? (10)DeepSeek论文参考文献指令 (11)DeepSeek基础知识。
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
1、文件内容:jdepend-demo-2.9.1-10.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/jdepend-demo-2.9.1-10.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊