// A "CollectedHeap" is an implementation of a java heap for HotSpot. This
// is an abstract class: there may be many different kinds of heaps. This
// class defines the functions that a heap must implement, and contains
// infrastructure common to all heaps.
// // CollectedHeap // SharedHeap // GenCollectedHeap // G1CollectedHeap // ParallelScavengeHeap // class CollectedHeap : public CHeapObj { friend class VMStructs; friend class IsGCActiveMark; // Block structured external access to _is_gc_active friend class constantPoolCacheKlass; // allocate() method inserts is_conc_safe #ifdef ASSERT static int _fire_out_of_memory_count; #endif // Used for filler objects (static, but initialized in ctor). static size_t _filler_array_max_size; GCHeapLog* _gc_heap_log; // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2 is being used bool _defer_initial_card_mark; protected: MemRegion _reserved; BarrierSet* _barrier_set; bool _is_gc_active; uint _n_par_threads; unsigned int _total_collections; // ... started unsigned int _total_full_collections; // ... started NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;) NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;) // Reason for current garbage collection. Should be set to // a value reflecting no collection between collections. GCCause::Cause _gc_cause; GCCause::Cause _gc_lastcause; PerfStringVariable* _perf_gc_cause; PerfStringVariable* _perf_gc_lastcause; // Constructor CollectedHeap(); // Do common initializations that must follow instance construction, // for example, those needing virtual calls. // This code could perhaps be moved into initialize() but would // be slightly more awkward because we want the latter to be a // pure virtual. void pre_initialize(); // Create a new tlab. All TLAB allocations must go through this. virtual HeapWord* allocate_new_tlab(size_t size); // Accumulate statistics on all tlabs. virtual void accumulate_statistics_all_tlabs(); // Reinitialize tlabs before resuming mutators. virtual void resize_all_tlabs(); // Allocate from the current thread's TLAB, with broken-out slow path. inline static HeapWord* allocate_from_tlab(Thread* thread, size_t size); static HeapWord* allocate_from_tlab_slow(Thread* thread, size_t size); // Allocate an uninitialized block of the given size, or returns NULL if // this is impossible. inline static HeapWord* common_mem_allocate_noinit(size_t size, TRAPS); // Like allocate_init, but the block returned by a successful allocation // is guaranteed initialized to zeros. inline static HeapWord* common_mem_allocate_init(size_t size, TRAPS); // Same as common_mem version, except memory is allocated in the permanent area // If there is no permanent area, revert to common_mem_allocate_noinit inline static HeapWord* common_permanent_mem_allocate_noinit(size_t size, TRAPS); // Same as common_mem version, except memory is allocated in the permanent area // If there is no permanent area, revert to common_mem_allocate_init inline static HeapWord* common_permanent_mem_allocate_init(size_t size, TRAPS); // Helper functions for (VM) allocation. inline static void post_allocation_setup_common(KlassHandle klass, HeapWord* obj, size_t size); inline static void post_allocation_setup_no_klass_install(KlassHandle klass, HeapWord* objPtr, size_t size); inline static void post_allocation_setup_obj(KlassHandle klass, HeapWord* obj, size_t size); inline static void post_allocation_setup_array(KlassHandle klass, HeapWord* obj, size_t size, int length); // Clears an allocated object. inline static void init_obj(HeapWord* obj, size_t size); // Filler object utilities. static inline size_t filler_array_hdr_size(); static inline size_t filler_array_min_size(); DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);) DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);) // Fill with a single array; caller must ensure filler_array_min_size() <= // words <= filler_array_max_size(). static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true); // Fill with a single object (either an int array or a java.lang.Object). static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true); // Verification functions virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size) PRODUCT_RETURN; virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) PRODUCT_RETURN; debug_only(static void check_for_valid_allocation_state();) public: enum Name { Abstract, SharedHeap, GenCollectedHeap, ParallelScavengeHeap, G1CollectedHeap }; static inline size_t filler_array_max_size() { return _filler_array_max_size; } virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; } /** * Returns JNI error code JNI_ENOMEM if memory could not be allocated, * and JNI_OK on success. */ virtual jint initialize() = 0; // In many heaps, there will be a need to perform some initialization activities // after the Universe is fully formed, but before general heap allocation is allowed. // This is the correct place to place such initialization methods. virtual void post_initialize() = 0; MemRegion reserved_region() const { return _reserved; } address base() const { return (address)reserved_region().start(); } // Future cleanup here. The following functions should specify bytes or // heapwords as part of their signature. virtual size_t capacity() const = 0; virtual size_t used() const = 0; // Return "true" if the part of the heap that allocates Java // objects has reached the maximal committed limit that it can // reach, without a garbage collection. virtual bool is_maximal_no_gc() const = 0; virtual size_t permanent_capacity() const = 0; virtual size_t permanent_used() const = 0; // Support for java.lang.Runtime.maxMemory(): return the maximum amount of // memory that the vm could make available for storing 'normal' java objects. // This is based on the reserved address space, but should not include space // that the vm uses internally for bookkeeping or temporary storage (e.g., // perm gen space or, in the case of the young gen, one of the survivor // spaces). virtual size_t max_capacity() const = 0; // Returns "TRUE" if "p" points into the reserved area of the heap. bool is_in_reserved(const void* p) const { return _reserved.contains(p); } bool is_in_reserved_or_null(const void* p) const { return p == NULL || is_in_reserved(p); } // Returns "TRUE" iff "p" points into the committed areas of the heap. // Since this method can be expensive in general, we restrict its // use to assertion checking only. virtual bool is_in(const void* p) const = 0; bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); } // Let's define some terms: a "closed" subset of a heap is one that // // 1) contains all currently-allocated objects, and // // 2) is closed under reference: no object in the closed subset // references one outside the closed subset. // // Membership in a heap's closed subset is useful for assertions. // Clearly, the entire heap is a closed subset, so the default // implementation is to use "is_in_reserved". But this may not be too // liberal to perform useful checking. Also, the "is_in" predicate // defines a closed subset, but may be too expensive, since "is_in" // verifies that its argument points to an object head. The // "closed_subset" method allows a heap to define an intermediate // predicate, allowing more precise checking than "is_in_reserved" at // lower cost than "is_in." // One important case is a heap composed of disjoint contiguous spaces, // such as the Garbage-First collector. Such heaps have a convenient // closed subset consisting of the allocated portions of those // contiguous spaces. // Return "TRUE" iff the given pointer points into the heap's defined // closed subset (which defaults to the entire heap). virtual bool is_in_closed_subset(const void* p) const { return is_in_reserved(p); } bool is_in_closed_subset_or_null(const void* p) const { return p == NULL || is_in_closed_subset(p); } // XXX is_permanent() and is_in_permanent() should be better named // to distinguish one from the other. // Returns "TRUE" if "p" is allocated as "permanent" data. // If the heap does not use "permanent" data, returns the same // value is_in_reserved() would return. // NOTE: this actually returns true if "p" is in reserved space // for the space not that it is actually allocated (i.e. in committed // space). If you need the more conservative answer use is_permanent(). virtual bool is_in_permanent(const void *p) const = 0; #ifdef ASSERT // Returns true if "p" is in the part of the // heap being collected. virtual bool is_in_partial_collection(const void *p) = 0; #endif bool is_in_permanent_or_null(const void *p) const { return p == NULL || is_in_permanent(p); } // Returns "TRUE" if "p" is in the committed area of "permanent" data. // If the heap does not use "permanent" data, returns the same // value is_in() would return. virtual bool is_permanent(const void *p) const = 0; bool is_permanent_or_null(const void *p) const { return p == NULL || is_permanent(p); } // An object is scavengable if its location may move during a scavenge. // (A scavenge is a GC which is not a full GC.) virtual bool is_scavengable(const void *p) = 0; // Returns "TRUE" if "p" is a method oop in the // current heap, with high probability. This predicate // is not stable, in general. bool is_valid_method(oop p) const; void set_gc_cause(GCCause::Cause v) { if (UsePerfData) { _gc_lastcause = _gc_cause; _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause)); _perf_gc_cause->set_value(GCCause::to_string(v)); } _gc_cause = v; } GCCause::Cause gc_cause() { return _gc_cause; } // Number of threads currently working on GC tasks. uint n_par_threads() { return _n_par_threads; } // May be overridden to set additional parallelism. virtual void set_par_threads(uint t) { _n_par_threads = t; }; // Preload classes into the shared portion of the heap, and then dump // that data to a file so that it can be loaded directly by another // VM (then terminate). virtual void preload_and_dump(TRAPS) { ShouldNotReachHere(); } // Allocate and initialize instances of Class static oop Class_obj_allocate(KlassHandle klass, int size, KlassHandle real_klass, TRAPS); // General obj/array allocation facilities. inline static oop obj_allocate(KlassHandle klass, int size, TRAPS); inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS); inline static oop array_allocate_nozero(KlassHandle klass, int size, int length, TRAPS); // Special obj/array allocation facilities. // Some heaps may want to manage "permanent" data uniquely. These default // to the general routines if the heap does not support such handling. inline static oop permanent_obj_allocate(KlassHandle klass, int size, TRAPS); // permanent_obj_allocate_no_klass_install() does not do the installation of // the klass pointer in the newly created object (as permanent_obj_allocate() // above does). This allows for a delay in the installation of the klass // pointer that is needed during the create of klassKlass's. The // method post_allocation_install_obj_klass() is used to install the // klass pointer. inline static oop permanent_obj_allocate_no_klass_install(KlassHandle klass, int size, TRAPS); inline static void post_allocation_install_obj_klass(KlassHandle klass, oop obj, int size); inline static oop permanent_array_allocate(KlassHandle klass, int size, int length, TRAPS); // Raw memory allocation facilities // The obj and array allocate methods are covers for these methods. // The permanent allocation method should default to mem_allocate if // permanent memory isn't supported. mem_allocate() should never be // called to allocate TLABs, only individual objects. virtual HeapWord* mem_allocate(size_t size, bool* gc_overhead_limit_was_exceeded) = 0; virtual HeapWord* permanent_mem_allocate(size_t size) = 0; // Utilities for turning raw memory into filler objects. // // min_fill_size() is the smallest region that can be filled. // fill_with_objects() can fill arbitrary-sized regions of the heap using // multiple objects. fill_with_object() is for regions known to be smaller // than the largest array of integers; it uses a single object to fill the // region and has slightly less overhead. static size_t min_fill_size() { return size_t(align_object_size(oopDesc::header_size())); } static void fill_with_objects(HeapWord* start, size_t words, bool zap = true); static void fill_with_object(HeapWord* start, size_t words, bool zap = true); static void fill_with_object(MemRegion region, bool zap = true) { fill_with_object(region.start(), region.word_size(), zap); } static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) { fill_with_object(start, pointer_delta(end, start), zap); } // Some heaps may offer a contiguous region for shared non-blocking // allocation, via inlined code (by exporting the address of the top and // end fields defining the extent of the contiguous allocation region.) // This function returns "true" iff the heap supports this kind of // allocation. (Default is "no".) virtual bool supports_inline_contig_alloc() const { return false; } // These functions return the addresses of the fields that define the // boundaries of the contiguous allocation area. (These fields should be // physically near to one another.) virtual HeapWord** top_addr() const { guarantee(false, "inline contiguous allocation not supported"); return NULL; } virtual HeapWord** end_addr() const { guarantee(false, "inline contiguous allocation not supported"); return NULL; } // Some heaps may be in an unparseable state at certain times between // collections. This may be necessary for efficient implementation of // certain allocation-related activities. Calling this function before // attempting to parse a heap ensures that the heap is in a parsable // state (provided other concurrent activity does not introduce // unparsability). It is normally expected, therefore, that this // method is invoked with the world stopped. // NOTE: if you override this method, make sure you call // super::ensure_parsability so that the non-generational // part of the work gets done. See implementation of // CollectedHeap::ensure_parsability and, for instance, // that of GenCollectedHeap::ensure_parsability(). // The argument "retire_tlabs" controls whether existing TLABs // are merely filled or also retired, thus preventing further // allocation from them and necessitating allocation of new TLABs. virtual void ensure_parsability(bool retire_tlabs); // Return an estimate of the maximum allocation that could be performed // without triggering any collection or expansion activity. In a // generational collector, for example, this is probably the largest // allocation that could be supported (without expansion) in the youngest // generation. It is "unsafe" because no locks are taken; the result // should be treated as an approximation, not a guarantee, for use in // heuristic resizing decisions. virtual size_t unsafe_max_alloc() = 0; // Section on thread-local allocation buffers (TLABs) // If the heap supports thread-local allocation buffers, it should override // the following methods: // Returns "true" iff the heap supports thread-local allocation buffers. // The default is "no". virtual bool supports_tlab_allocation() const { return false; } // The amount of space available for thread-local allocation buffers. virtual size_t tlab_capacity(Thread *thr) const { guarantee(false, "thread-local allocation buffers not supported"); return 0; } // An estimate of the maximum allocation that could be performed // for thread-local allocation buffers without triggering any // collection or expansion activity. virtual size_t unsafe_max_tlab_alloc(Thread *thr) const { guarantee(false, "thread-local allocation buffers not supported"); return 0; } // Can a compiler initialize a new object without store barriers? // This permission only extends from the creation of a new object // via a TLAB up to the first subsequent safepoint. If such permission // is granted for this heap type, the compiler promises to call // defer_store_barrier() below on any slow path allocation of // a new object for which such initializing store barriers will // have been elided. virtual bool can_elide_tlab_store_barriers() const = 0; // If a compiler is eliding store barriers for TLAB-allocated objects, // there is probably a corresponding slow path which can produce // an object allocated anywhere. The compiler's runtime support // promises to call this function on such a slow-path-allocated // object before performing initializations that have elided // store barriers. Returns new_obj, or maybe a safer copy thereof. virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj); // Answers whether an initializing store to a new object currently // allocated at the given address doesn't need a store // barrier. Returns "true" if it doesn't need an initializing // store barrier; answers "false" if it does. virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0; // If a compiler is eliding store barriers for TLAB-allocated objects, // we will be informed of a slow-path allocation by a call // to new_store_pre_barrier() above. Such a call precedes the // initialization of the object itself, and no post-store-barriers will // be issued. Some heap types require that the barrier strictly follows // the initializing stores. (This is currently implemented by deferring the // barrier until the next slow-path allocation or gc-related safepoint.) // This interface answers whether a particular heap type needs the card // mark to be thus strictly sequenced after the stores. virtual bool card_mark_must_follow_store() const = 0; // If the CollectedHeap was asked to defer a store barrier above, // this informs it to flush such a deferred store barrier to the // remembered set. virtual void flush_deferred_store_barrier(JavaThread* thread); // Can a compiler elide a store barrier when it writes // a permanent oop into the heap? Applies when the compiler // is storing x to the heap, where x->is_perm() is true. virtual bool can_elide_permanent_oop_store_barriers() const = 0; // Does this heap support heap inspection (+PrintClassHistogram?) virtual bool supports_heap_inspection() const = 0; // Perform a collection of the heap; intended for use in implementing // "System.gc". This probably implies as full a collection as the // "CollectedHeap" supports. virtual void collect(GCCause::Cause cause) = 0; // This interface assumes that it's being called by the // vm thread. It collects the heap assuming that the // heap lock is already held and that we are executing in // the context of the vm thread. virtual void collect_as_vm_thread(GCCause::Cause cause) = 0; // Returns the barrier set for this heap BarrierSet* barrier_set() { return _barrier_set; } // Returns "true" iff there is a stop-world GC in progress. (I assume // that it should answer "false" for the concurrent part of a concurrent // collector -- dld). bool is_gc_active() const { return _is_gc_active; } // Total number of GC collections (started) unsigned int total_collections() const { return _total_collections; } unsigned int total_full_collections() const { return _total_full_collections;} // Increment total number of GC collections (started) // Should be protected but used by PSMarkSweep - cleanup for 1.4.2 void increment_total_collections(bool full = false) { _total_collections++; if (full) { increment_total_full_collections(); } } void increment_total_full_collections() { _total_full_collections++; } // Return the AdaptiveSizePolicy for the heap. virtual AdaptiveSizePolicy* size_policy() = 0; // Return the CollectorPolicy for the heap virtual CollectorPolicy* collector_policy() const = 0; // Iterate over all the ref-containing fields of all objects, calling // "cl.do_oop" on each. This includes objects in permanent memory. virtual void oop_iterate(OopClosure* cl) = 0; // Iterate over all objects, calling "cl.do_object" on each. // This includes objects in permanent memory. virtual void object_iterate(ObjectClosure* cl) = 0; // Similar to object_iterate() except iterates only // over live objects. virtual void safe_object_iterate(ObjectClosure* cl) = 0; // Behaves the same as oop_iterate, except only traverses // interior pointers contained in permanent memory. If there // is no permanent memory, does nothing. virtual void permanent_oop_iterate(OopClosure* cl) = 0; // Behaves the same as object_iterate, except only traverses // object contained in permanent memory. If there is no // permanent memory, does nothing. virtual void permanent_object_iterate(ObjectClosure* cl) = 0; // NOTE! There is no requirement that a collector implement these // functions. // // A CollectedHeap is divided into a dense sequence of "blocks"; that is, // each address in the (reserved) heap is a member of exactly // one block. The defining characteristic of a block is that it is // possible to find its size, and thus to progress forward to the next // block. (Blocks may be of different sizes.) Thus, blocks may // represent Java objects, or they might be free blocks in a // free-list-based heap (or subheap), as long as the two kinds are // distinguishable and the size of each is determinable. // Returns the address of the start of the "block" that contains the // address "addr". We say "blocks" instead of "object" since some heaps // may not pack objects densely; a chunk may either be an object or a // non-object. virtual HeapWord* block_start(const void* addr) const = 0; // Requires "addr" to be the start of a chunk, and returns its size. // "addr + size" is required to be the start of a new chunk, or the end // of the active area of the heap. virtual size_t block_size(const HeapWord* addr) const = 0; // Requires "addr" to be the start of a block, and returns "TRUE" iff // the block is an object. virtual bool block_is_obj(const HeapWord* addr) const = 0; // Returns the longest time (in ms) that has elapsed since the last // time that any part of the heap was examined by a garbage collection. virtual jlong millis_since_last_gc() = 0; // Perform any cleanup actions necessary before allowing a verification. virtual void prepare_for_verify() = 0; // Generate any dumps preceding or following a full gc void pre_full_gc_dump(); void post_full_gc_dump(); // Print heap information on the given outputStream. virtual void print_on(outputStream* st) const = 0; // The default behavior is to call print_on() on tty. virtual void print() const { print_on(tty); } // Print more detailed heap information on the given // outputStream. The default behaviour is to call print_on(). It is // up to each subclass to override it and add any additional output // it needs. virtual void print_extended_on(outputStream* st) const { print_on(st); } // Print all GC threads (other than the VM thread) // used by this heap. virtual void print_gc_threads_on(outputStream* st) const = 0; // The default behavior is to call print_gc_threads_on() on tty. void print_gc_threads() { print_gc_threads_on(tty); } // Iterator for all GC threads (other than VM thread) virtual void gc_threads_do(ThreadClosure* tc) const = 0; // Print any relevant tracing info that flags imply. // Default implementation does nothing. virtual void print_tracing_info() const = 0; // If PrintHeapAtGC is set call the appropriate routi void print_heap_before_gc() { if (PrintHeapAtGC) { Universe::print_heap_before_gc(); } if (_gc_heap_log != NULL) { _gc_heap_log->log_heap_before(); } } void print_heap_after_gc() { if (PrintHeapAtGC) { Universe::print_heap_after_gc(); } if (_gc_heap_log != NULL) { _gc_heap_log->log_heap_after(); } } // Allocate GCHeapLog during VM startup static void initialize_heap_log(); // Heap verification virtual void verify(bool allow_dirty, bool silent, VerifyOption option) = 0; // Non product verification and debugging. #ifndef PRODUCT // Support for PromotionFailureALot. Return true if it's time to cause a // promotion failure. The no-argument version uses // this->_promotion_failure_alot_count as the counter. inline bool promotion_should_fail(volatile size_t* count); inline bool promotion_should_fail(); // Reset the PromotionFailureALot counters. Should be called at the end of a // GC in which promotion failure ocurred. inline void reset_promotion_should_fail(volatile size_t* count); inline void reset_promotion_should_fail(); #endif // #ifndef PRODUCT #ifdef ASSERT static int fired_fake_oom() { return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt); } #endif public: // This is a convenience method that is used in cases where // the actual number of GC worker threads is not pertinent but // only whether there more than 0. Use of this method helps // reduce the occurrence of ParallelGCThreads to uses where the // actual number may be germane. static bool use_parallel_gc_threads() { return ParallelGCThreads > 0; } /////////////// Unit tests /////////////// NOT_PRODUCT(static void test_is_in();) };
1、https://en.wikipedia.org/wiki/Memory_management#HEAP
相关推荐
例如,`src/hotspot/share/runtime`目录下的`G1GarbageCollector.cpp`和`G1CollectedHeap.cpp`文件涉及到了G1垃圾收集器的实现,它是Java 8中默认的垃圾收集器,提供了更高效的内存管理。 总的来说,通过研究...
【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
精选毕设项目-宅男社区
精选毕设项目-扫描条形码
配网两阶段鲁棒优化调度模型 关键词:两阶段鲁棒优化,CCG算法,储能 仿真算例采用33节点,采用matlab+yalmip+cplex编写,两阶段模型采用CCG算法求解。 模型中一阶段变量主要包括01变量和无功优化变量,核心变量主要存在于二阶段,因此在叠加二阶段变量优化过程中更容易得到最优解,所以有限次迭代即得到收敛的结果。 模型以网损为目标,包括功率平衡、网络潮流、电压电流、蓄电池出力以及无功设备出力等约束。 复现《两阶段鲁棒优化的主动配电网动态无功优化》-熊壮壮,具体内容可自行下载了解。
comsol光栅仿真 计算复合波导光栅准BIC增强古斯汉森位移
精选毕设项目-车源宝寻车广场
数字农业产业项目整体解决方案
精选毕设项目-幸运大抽奖
SRS构型七自由度冗余机械臂运动学建模全套matlab代码 代码主要功能: [1]. 基于臂角参数化方法求解机械臂在给定末端位姿和臂角下的关节角度; [2]. 求解机械臂在给定末端位姿下的有效臂角范围,有效即在该区间内机械臂关节角度不会超出关节限位; [3]. 以避关节限位为目标在有效臂角区间内进行最优臂角的选取,进而获取机械臂在给定末端位姿下的最优关节角度。 购前须知: 1. 代码均为个人手写,主要包含运动学建模全套代码; 2. 代码已经包含必要的注释; 包含原理推导文档,不包含绘图脚本以及urdf;
精选毕设项目-微信小程序天气源码
bmjebm-29-6.pdf
chromedriver-linux64_123.0.6273.0
精选毕设项目-腾讯云小程序一站式解决方案
精选毕设项目-仿饿了么
Spring Boot是Spring框架的一个模块,它简化了基于Spring应用程序的创建和部署过程。Spring Boot提供了快速启动Spring应用程序的能力,通过自动配置、微服务支持和独立运行的特性,使得开发者能够专注于业务逻辑,而不是配置细节。Spring Boot的核心思想是约定优于配置,它通过自动配置机制,根据项目中添加的依赖自动配置Spring应用。这大大减少了配置文件的编写,提高了开发效率。Spring Boot还支持嵌入式服务器,如Tomcat、Jetty和Undertow,使得开发者无需部署WAR文件到外部服务器即可运行Spring应用。 Java是一种广泛使用的高级编程语言,由Sun Microsystems公司(现为Oracle公司的一部分)在1995年首次发布。Java以其“编写一次,到处运行”(WORA)的特性而闻名,这一特性得益于Java虚拟机(JVM)的使用,它允许Java程序在任何安装了相应JVM的平台上运行,而无需重新编译。Java语言设计之初就是为了跨平台,同时具备面向对象、并发、安全和健壮性等特点。 Java语言广泛应用于企业级应用、移动应用、桌面应用、游戏开发、云计算和物联网等领域。它的语法结构清晰,易于学习和使用,同时提供了丰富的API库,支持多种编程范式,包括面向对象、命令式、函数式和并发编程。Java的强类型系统和自动内存管理减少了程序错误和内存泄漏的风险。随着Java的不断更新和发展,它已经成为一个成熟的生态系统,拥有庞大的开发者社区和持续的技术创新。Java 8引入了Lambda表达式,进一步简化了并发编程和函数式编程的实现。Java 9及以后的版本继续在模块化、性能和安全性方面进行改进,确保Java语言能够适应不断变化的技术需求和市场趋势。 MySQL是一个关系型数据库管理系统(RDBMS),它基于结构化查询语言(SQL)来管理和存储数据。MySQL由瑞典MySQL AB公司开发,并于2008年被Sun Microsystems收购,随后在2010年,Oracle公司收购了Sun Microsystems,从而获得了MySQL的所有权。MySQL以其高性能、可靠性和易用性而闻名,它提供了多种特性来满足不同规模应用程序的需求。作为一个开源解决方案,MySQL拥有一个活跃的社区,不断为其发展和改进做出贡献。它的多线程功能允许同时处理多个查询,而其优化器则可以高效地执行复杂的查询操作。 随着互联网和Web应用的快速发展,MySQL已成为许多开发者和公司的首选数据库之一。它的可扩展性和灵活性使其能够处理从小规模应用到大规模企业级应用的各种需求。通过各种存储引擎,MySQL能够适应不同的数据存储和检索需求,从而为用户提供了高度的定制性和性能优化的可能性。
精选毕设项目-体育新闻赛事数据
chromedriver-linux64_122.0.6254.0
基于FPGA的硬件电子琴设计(文档+程序)