// A "CollectedHeap" is an implementation of a java heap for HotSpot. This
// is an abstract class: there may be many different kinds of heaps. This
// class defines the functions that a heap must implement, and contains
// infrastructure common to all heaps.
// // CollectedHeap // SharedHeap // GenCollectedHeap // G1CollectedHeap // ParallelScavengeHeap // class CollectedHeap : public CHeapObj { friend class VMStructs; friend class IsGCActiveMark; // Block structured external access to _is_gc_active friend class constantPoolCacheKlass; // allocate() method inserts is_conc_safe #ifdef ASSERT static int _fire_out_of_memory_count; #endif // Used for filler objects (static, but initialized in ctor). static size_t _filler_array_max_size; GCHeapLog* _gc_heap_log; // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2 is being used bool _defer_initial_card_mark; protected: MemRegion _reserved; BarrierSet* _barrier_set; bool _is_gc_active; uint _n_par_threads; unsigned int _total_collections; // ... started unsigned int _total_full_collections; // ... started NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;) NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;) // Reason for current garbage collection. Should be set to // a value reflecting no collection between collections. GCCause::Cause _gc_cause; GCCause::Cause _gc_lastcause; PerfStringVariable* _perf_gc_cause; PerfStringVariable* _perf_gc_lastcause; // Constructor CollectedHeap(); // Do common initializations that must follow instance construction, // for example, those needing virtual calls. // This code could perhaps be moved into initialize() but would // be slightly more awkward because we want the latter to be a // pure virtual. void pre_initialize(); // Create a new tlab. All TLAB allocations must go through this. virtual HeapWord* allocate_new_tlab(size_t size); // Accumulate statistics on all tlabs. virtual void accumulate_statistics_all_tlabs(); // Reinitialize tlabs before resuming mutators. virtual void resize_all_tlabs(); // Allocate from the current thread's TLAB, with broken-out slow path. inline static HeapWord* allocate_from_tlab(Thread* thread, size_t size); static HeapWord* allocate_from_tlab_slow(Thread* thread, size_t size); // Allocate an uninitialized block of the given size, or returns NULL if // this is impossible. inline static HeapWord* common_mem_allocate_noinit(size_t size, TRAPS); // Like allocate_init, but the block returned by a successful allocation // is guaranteed initialized to zeros. inline static HeapWord* common_mem_allocate_init(size_t size, TRAPS); // Same as common_mem version, except memory is allocated in the permanent area // If there is no permanent area, revert to common_mem_allocate_noinit inline static HeapWord* common_permanent_mem_allocate_noinit(size_t size, TRAPS); // Same as common_mem version, except memory is allocated in the permanent area // If there is no permanent area, revert to common_mem_allocate_init inline static HeapWord* common_permanent_mem_allocate_init(size_t size, TRAPS); // Helper functions for (VM) allocation. inline static void post_allocation_setup_common(KlassHandle klass, HeapWord* obj, size_t size); inline static void post_allocation_setup_no_klass_install(KlassHandle klass, HeapWord* objPtr, size_t size); inline static void post_allocation_setup_obj(KlassHandle klass, HeapWord* obj, size_t size); inline static void post_allocation_setup_array(KlassHandle klass, HeapWord* obj, size_t size, int length); // Clears an allocated object. inline static void init_obj(HeapWord* obj, size_t size); // Filler object utilities. static inline size_t filler_array_hdr_size(); static inline size_t filler_array_min_size(); DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);) DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);) // Fill with a single array; caller must ensure filler_array_min_size() <= // words <= filler_array_max_size(). static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true); // Fill with a single object (either an int array or a java.lang.Object). static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true); // Verification functions virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size) PRODUCT_RETURN; virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) PRODUCT_RETURN; debug_only(static void check_for_valid_allocation_state();) public: enum Name { Abstract, SharedHeap, GenCollectedHeap, ParallelScavengeHeap, G1CollectedHeap }; static inline size_t filler_array_max_size() { return _filler_array_max_size; } virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; } /** * Returns JNI error code JNI_ENOMEM if memory could not be allocated, * and JNI_OK on success. */ virtual jint initialize() = 0; // In many heaps, there will be a need to perform some initialization activities // after the Universe is fully formed, but before general heap allocation is allowed. // This is the correct place to place such initialization methods. virtual void post_initialize() = 0; MemRegion reserved_region() const { return _reserved; } address base() const { return (address)reserved_region().start(); } // Future cleanup here. The following functions should specify bytes or // heapwords as part of their signature. virtual size_t capacity() const = 0; virtual size_t used() const = 0; // Return "true" if the part of the heap that allocates Java // objects has reached the maximal committed limit that it can // reach, without a garbage collection. virtual bool is_maximal_no_gc() const = 0; virtual size_t permanent_capacity() const = 0; virtual size_t permanent_used() const = 0; // Support for java.lang.Runtime.maxMemory(): return the maximum amount of // memory that the vm could make available for storing 'normal' java objects. // This is based on the reserved address space, but should not include space // that the vm uses internally for bookkeeping or temporary storage (e.g., // perm gen space or, in the case of the young gen, one of the survivor // spaces). virtual size_t max_capacity() const = 0; // Returns "TRUE" if "p" points into the reserved area of the heap. bool is_in_reserved(const void* p) const { return _reserved.contains(p); } bool is_in_reserved_or_null(const void* p) const { return p == NULL || is_in_reserved(p); } // Returns "TRUE" iff "p" points into the committed areas of the heap. // Since this method can be expensive in general, we restrict its // use to assertion checking only. virtual bool is_in(const void* p) const = 0; bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); } // Let's define some terms: a "closed" subset of a heap is one that // // 1) contains all currently-allocated objects, and // // 2) is closed under reference: no object in the closed subset // references one outside the closed subset. // // Membership in a heap's closed subset is useful for assertions. // Clearly, the entire heap is a closed subset, so the default // implementation is to use "is_in_reserved". But this may not be too // liberal to perform useful checking. Also, the "is_in" predicate // defines a closed subset, but may be too expensive, since "is_in" // verifies that its argument points to an object head. The // "closed_subset" method allows a heap to define an intermediate // predicate, allowing more precise checking than "is_in_reserved" at // lower cost than "is_in." // One important case is a heap composed of disjoint contiguous spaces, // such as the Garbage-First collector. Such heaps have a convenient // closed subset consisting of the allocated portions of those // contiguous spaces. // Return "TRUE" iff the given pointer points into the heap's defined // closed subset (which defaults to the entire heap). virtual bool is_in_closed_subset(const void* p) const { return is_in_reserved(p); } bool is_in_closed_subset_or_null(const void* p) const { return p == NULL || is_in_closed_subset(p); } // XXX is_permanent() and is_in_permanent() should be better named // to distinguish one from the other. // Returns "TRUE" if "p" is allocated as "permanent" data. // If the heap does not use "permanent" data, returns the same // value is_in_reserved() would return. // NOTE: this actually returns true if "p" is in reserved space // for the space not that it is actually allocated (i.e. in committed // space). If you need the more conservative answer use is_permanent(). virtual bool is_in_permanent(const void *p) const = 0; #ifdef ASSERT // Returns true if "p" is in the part of the // heap being collected. virtual bool is_in_partial_collection(const void *p) = 0; #endif bool is_in_permanent_or_null(const void *p) const { return p == NULL || is_in_permanent(p); } // Returns "TRUE" if "p" is in the committed area of "permanent" data. // If the heap does not use "permanent" data, returns the same // value is_in() would return. virtual bool is_permanent(const void *p) const = 0; bool is_permanent_or_null(const void *p) const { return p == NULL || is_permanent(p); } // An object is scavengable if its location may move during a scavenge. // (A scavenge is a GC which is not a full GC.) virtual bool is_scavengable(const void *p) = 0; // Returns "TRUE" if "p" is a method oop in the // current heap, with high probability. This predicate // is not stable, in general. bool is_valid_method(oop p) const; void set_gc_cause(GCCause::Cause v) { if (UsePerfData) { _gc_lastcause = _gc_cause; _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause)); _perf_gc_cause->set_value(GCCause::to_string(v)); } _gc_cause = v; } GCCause::Cause gc_cause() { return _gc_cause; } // Number of threads currently working on GC tasks. uint n_par_threads() { return _n_par_threads; } // May be overridden to set additional parallelism. virtual void set_par_threads(uint t) { _n_par_threads = t; }; // Preload classes into the shared portion of the heap, and then dump // that data to a file so that it can be loaded directly by another // VM (then terminate). virtual void preload_and_dump(TRAPS) { ShouldNotReachHere(); } // Allocate and initialize instances of Class static oop Class_obj_allocate(KlassHandle klass, int size, KlassHandle real_klass, TRAPS); // General obj/array allocation facilities. inline static oop obj_allocate(KlassHandle klass, int size, TRAPS); inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS); inline static oop array_allocate_nozero(KlassHandle klass, int size, int length, TRAPS); // Special obj/array allocation facilities. // Some heaps may want to manage "permanent" data uniquely. These default // to the general routines if the heap does not support such handling. inline static oop permanent_obj_allocate(KlassHandle klass, int size, TRAPS); // permanent_obj_allocate_no_klass_install() does not do the installation of // the klass pointer in the newly created object (as permanent_obj_allocate() // above does). This allows for a delay in the installation of the klass // pointer that is needed during the create of klassKlass's. The // method post_allocation_install_obj_klass() is used to install the // klass pointer. inline static oop permanent_obj_allocate_no_klass_install(KlassHandle klass, int size, TRAPS); inline static void post_allocation_install_obj_klass(KlassHandle klass, oop obj, int size); inline static oop permanent_array_allocate(KlassHandle klass, int size, int length, TRAPS); // Raw memory allocation facilities // The obj and array allocate methods are covers for these methods. // The permanent allocation method should default to mem_allocate if // permanent memory isn't supported. mem_allocate() should never be // called to allocate TLABs, only individual objects. virtual HeapWord* mem_allocate(size_t size, bool* gc_overhead_limit_was_exceeded) = 0; virtual HeapWord* permanent_mem_allocate(size_t size) = 0; // Utilities for turning raw memory into filler objects. // // min_fill_size() is the smallest region that can be filled. // fill_with_objects() can fill arbitrary-sized regions of the heap using // multiple objects. fill_with_object() is for regions known to be smaller // than the largest array of integers; it uses a single object to fill the // region and has slightly less overhead. static size_t min_fill_size() { return size_t(align_object_size(oopDesc::header_size())); } static void fill_with_objects(HeapWord* start, size_t words, bool zap = true); static void fill_with_object(HeapWord* start, size_t words, bool zap = true); static void fill_with_object(MemRegion region, bool zap = true) { fill_with_object(region.start(), region.word_size(), zap); } static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) { fill_with_object(start, pointer_delta(end, start), zap); } // Some heaps may offer a contiguous region for shared non-blocking // allocation, via inlined code (by exporting the address of the top and // end fields defining the extent of the contiguous allocation region.) // This function returns "true" iff the heap supports this kind of // allocation. (Default is "no".) virtual bool supports_inline_contig_alloc() const { return false; } // These functions return the addresses of the fields that define the // boundaries of the contiguous allocation area. (These fields should be // physically near to one another.) virtual HeapWord** top_addr() const { guarantee(false, "inline contiguous allocation not supported"); return NULL; } virtual HeapWord** end_addr() const { guarantee(false, "inline contiguous allocation not supported"); return NULL; } // Some heaps may be in an unparseable state at certain times between // collections. This may be necessary for efficient implementation of // certain allocation-related activities. Calling this function before // attempting to parse a heap ensures that the heap is in a parsable // state (provided other concurrent activity does not introduce // unparsability). It is normally expected, therefore, that this // method is invoked with the world stopped. // NOTE: if you override this method, make sure you call // super::ensure_parsability so that the non-generational // part of the work gets done. See implementation of // CollectedHeap::ensure_parsability and, for instance, // that of GenCollectedHeap::ensure_parsability(). // The argument "retire_tlabs" controls whether existing TLABs // are merely filled or also retired, thus preventing further // allocation from them and necessitating allocation of new TLABs. virtual void ensure_parsability(bool retire_tlabs); // Return an estimate of the maximum allocation that could be performed // without triggering any collection or expansion activity. In a // generational collector, for example, this is probably the largest // allocation that could be supported (without expansion) in the youngest // generation. It is "unsafe" because no locks are taken; the result // should be treated as an approximation, not a guarantee, for use in // heuristic resizing decisions. virtual size_t unsafe_max_alloc() = 0; // Section on thread-local allocation buffers (TLABs) // If the heap supports thread-local allocation buffers, it should override // the following methods: // Returns "true" iff the heap supports thread-local allocation buffers. // The default is "no". virtual bool supports_tlab_allocation() const { return false; } // The amount of space available for thread-local allocation buffers. virtual size_t tlab_capacity(Thread *thr) const { guarantee(false, "thread-local allocation buffers not supported"); return 0; } // An estimate of the maximum allocation that could be performed // for thread-local allocation buffers without triggering any // collection or expansion activity. virtual size_t unsafe_max_tlab_alloc(Thread *thr) const { guarantee(false, "thread-local allocation buffers not supported"); return 0; } // Can a compiler initialize a new object without store barriers? // This permission only extends from the creation of a new object // via a TLAB up to the first subsequent safepoint. If such permission // is granted for this heap type, the compiler promises to call // defer_store_barrier() below on any slow path allocation of // a new object for which such initializing store barriers will // have been elided. virtual bool can_elide_tlab_store_barriers() const = 0; // If a compiler is eliding store barriers for TLAB-allocated objects, // there is probably a corresponding slow path which can produce // an object allocated anywhere. The compiler's runtime support // promises to call this function on such a slow-path-allocated // object before performing initializations that have elided // store barriers. Returns new_obj, or maybe a safer copy thereof. virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj); // Answers whether an initializing store to a new object currently // allocated at the given address doesn't need a store // barrier. Returns "true" if it doesn't need an initializing // store barrier; answers "false" if it does. virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0; // If a compiler is eliding store barriers for TLAB-allocated objects, // we will be informed of a slow-path allocation by a call // to new_store_pre_barrier() above. Such a call precedes the // initialization of the object itself, and no post-store-barriers will // be issued. Some heap types require that the barrier strictly follows // the initializing stores. (This is currently implemented by deferring the // barrier until the next slow-path allocation or gc-related safepoint.) // This interface answers whether a particular heap type needs the card // mark to be thus strictly sequenced after the stores. virtual bool card_mark_must_follow_store() const = 0; // If the CollectedHeap was asked to defer a store barrier above, // this informs it to flush such a deferred store barrier to the // remembered set. virtual void flush_deferred_store_barrier(JavaThread* thread); // Can a compiler elide a store barrier when it writes // a permanent oop into the heap? Applies when the compiler // is storing x to the heap, where x->is_perm() is true. virtual bool can_elide_permanent_oop_store_barriers() const = 0; // Does this heap support heap inspection (+PrintClassHistogram?) virtual bool supports_heap_inspection() const = 0; // Perform a collection of the heap; intended for use in implementing // "System.gc". This probably implies as full a collection as the // "CollectedHeap" supports. virtual void collect(GCCause::Cause cause) = 0; // This interface assumes that it's being called by the // vm thread. It collects the heap assuming that the // heap lock is already held and that we are executing in // the context of the vm thread. virtual void collect_as_vm_thread(GCCause::Cause cause) = 0; // Returns the barrier set for this heap BarrierSet* barrier_set() { return _barrier_set; } // Returns "true" iff there is a stop-world GC in progress. (I assume // that it should answer "false" for the concurrent part of a concurrent // collector -- dld). bool is_gc_active() const { return _is_gc_active; } // Total number of GC collections (started) unsigned int total_collections() const { return _total_collections; } unsigned int total_full_collections() const { return _total_full_collections;} // Increment total number of GC collections (started) // Should be protected but used by PSMarkSweep - cleanup for 1.4.2 void increment_total_collections(bool full = false) { _total_collections++; if (full) { increment_total_full_collections(); } } void increment_total_full_collections() { _total_full_collections++; } // Return the AdaptiveSizePolicy for the heap. virtual AdaptiveSizePolicy* size_policy() = 0; // Return the CollectorPolicy for the heap virtual CollectorPolicy* collector_policy() const = 0; // Iterate over all the ref-containing fields of all objects, calling // "cl.do_oop" on each. This includes objects in permanent memory. virtual void oop_iterate(OopClosure* cl) = 0; // Iterate over all objects, calling "cl.do_object" on each. // This includes objects in permanent memory. virtual void object_iterate(ObjectClosure* cl) = 0; // Similar to object_iterate() except iterates only // over live objects. virtual void safe_object_iterate(ObjectClosure* cl) = 0; // Behaves the same as oop_iterate, except only traverses // interior pointers contained in permanent memory. If there // is no permanent memory, does nothing. virtual void permanent_oop_iterate(OopClosure* cl) = 0; // Behaves the same as object_iterate, except only traverses // object contained in permanent memory. If there is no // permanent memory, does nothing. virtual void permanent_object_iterate(ObjectClosure* cl) = 0; // NOTE! There is no requirement that a collector implement these // functions. // // A CollectedHeap is divided into a dense sequence of "blocks"; that is, // each address in the (reserved) heap is a member of exactly // one block. The defining characteristic of a block is that it is // possible to find its size, and thus to progress forward to the next // block. (Blocks may be of different sizes.) Thus, blocks may // represent Java objects, or they might be free blocks in a // free-list-based heap (or subheap), as long as the two kinds are // distinguishable and the size of each is determinable. // Returns the address of the start of the "block" that contains the // address "addr". We say "blocks" instead of "object" since some heaps // may not pack objects densely; a chunk may either be an object or a // non-object. virtual HeapWord* block_start(const void* addr) const = 0; // Requires "addr" to be the start of a chunk, and returns its size. // "addr + size" is required to be the start of a new chunk, or the end // of the active area of the heap. virtual size_t block_size(const HeapWord* addr) const = 0; // Requires "addr" to be the start of a block, and returns "TRUE" iff // the block is an object. virtual bool block_is_obj(const HeapWord* addr) const = 0; // Returns the longest time (in ms) that has elapsed since the last // time that any part of the heap was examined by a garbage collection. virtual jlong millis_since_last_gc() = 0; // Perform any cleanup actions necessary before allowing a verification. virtual void prepare_for_verify() = 0; // Generate any dumps preceding or following a full gc void pre_full_gc_dump(); void post_full_gc_dump(); // Print heap information on the given outputStream. virtual void print_on(outputStream* st) const = 0; // The default behavior is to call print_on() on tty. virtual void print() const { print_on(tty); } // Print more detailed heap information on the given // outputStream. The default behaviour is to call print_on(). It is // up to each subclass to override it and add any additional output // it needs. virtual void print_extended_on(outputStream* st) const { print_on(st); } // Print all GC threads (other than the VM thread) // used by this heap. virtual void print_gc_threads_on(outputStream* st) const = 0; // The default behavior is to call print_gc_threads_on() on tty. void print_gc_threads() { print_gc_threads_on(tty); } // Iterator for all GC threads (other than VM thread) virtual void gc_threads_do(ThreadClosure* tc) const = 0; // Print any relevant tracing info that flags imply. // Default implementation does nothing. virtual void print_tracing_info() const = 0; // If PrintHeapAtGC is set call the appropriate routi void print_heap_before_gc() { if (PrintHeapAtGC) { Universe::print_heap_before_gc(); } if (_gc_heap_log != NULL) { _gc_heap_log->log_heap_before(); } } void print_heap_after_gc() { if (PrintHeapAtGC) { Universe::print_heap_after_gc(); } if (_gc_heap_log != NULL) { _gc_heap_log->log_heap_after(); } } // Allocate GCHeapLog during VM startup static void initialize_heap_log(); // Heap verification virtual void verify(bool allow_dirty, bool silent, VerifyOption option) = 0; // Non product verification and debugging. #ifndef PRODUCT // Support for PromotionFailureALot. Return true if it's time to cause a // promotion failure. The no-argument version uses // this->_promotion_failure_alot_count as the counter. inline bool promotion_should_fail(volatile size_t* count); inline bool promotion_should_fail(); // Reset the PromotionFailureALot counters. Should be called at the end of a // GC in which promotion failure ocurred. inline void reset_promotion_should_fail(volatile size_t* count); inline void reset_promotion_should_fail(); #endif // #ifndef PRODUCT #ifdef ASSERT static int fired_fake_oom() { return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt); } #endif public: // This is a convenience method that is used in cases where // the actual number of GC worker threads is not pertinent but // only whether there more than 0. Use of this method helps // reduce the occurrence of ParallelGCThreads to uses where the // actual number may be germane. static bool use_parallel_gc_threads() { return ParallelGCThreads > 0; } /////////////// Unit tests /////////////// NOT_PRODUCT(static void test_is_in();) };
1、https://en.wikipedia.org/wiki/Memory_management#HEAP
相关推荐
- 查阅JVM源代码中的`CollectedHeap`类,找到了相关解释:“`Runtime.getRuntime().maxMemory()`方法返回JVM可用于存储‘正常’Java对象的最大内存量,该值基于保留的地址空间,但不包括JVM内部用于维护或临时存储的...
例如,`src/hotspot/share/runtime`目录下的`G1GarbageCollector.cpp`和`G1CollectedHeap.cpp`文件涉及到了G1垃圾收集器的实现,它是Java 8中默认的垃圾收集器,提供了更高效的内存管理。 总的来说,通过研究...
嵌入式八股文面试题库资料知识宝典-华为的面试试题.zip
训练导控系统设计.pdf
嵌入式八股文面试题库资料知识宝典-网络编程.zip
人脸转正GAN模型的高效压缩.pdf
少儿编程scratch项目源代码文件案例素材-几何冲刺 转瞬即逝.zip
少儿编程scratch项目源代码文件案例素材-鸡蛋.zip
嵌入式系统_USB设备枚举与HID通信_CH559单片机USB主机键盘鼠标复合设备控制_基于CH559单片机的USB主机模式设备枚举与键盘鼠标数据收发系统支持复合设备识别与HID
嵌入式八股文面试题库资料知识宝典-linux常见面试题.zip
面向智慧工地的压力机在线数据的预警应用开发.pdf
基于Unity3D的鱼类运动行为可视化研究.pdf
少儿编程scratch项目源代码文件案例素材-霍格沃茨魔法学校.zip
少儿编程scratch项目源代码文件案例素材-金币冲刺.zip
内容概要:本文深入探讨了HarmonyOS编译构建子系统的作用及其技术细节。作为鸿蒙操作系统背后的关键技术之一,编译构建子系统通过GN和Ninja工具实现了高效的源代码到机器代码的转换,确保了系统的稳定性和性能优化。该系统不仅支持多系统版本构建、芯片厂商定制,还具备强大的调试与维护能力。其高效编译速度、灵活性和可扩展性使其在华为设备和其他智能终端中发挥了重要作用。文章还比较了HarmonyOS编译构建子系统与安卓和iOS编译系统的异同,并展望了其未来的发展趋势和技术演进方向。; 适合人群:对操作系统底层技术感兴趣的开发者、工程师和技术爱好者。; 使用场景及目标:①了解HarmonyOS编译构建子系统的基本概念和工作原理;②掌握其在不同设备上的应用和优化策略;③对比HarmonyOS与安卓、iOS编译系统的差异;④探索其未来发展方向和技术演进路径。; 其他说明:本文详细介绍了HarmonyOS编译构建子系统的架构设计、核心功能和实际应用案例,强调了其在万物互联时代的重要性和潜力。阅读时建议重点关注编译构建子系统的独特优势及其对鸿蒙生态系统的深远影响。
嵌入式八股文面试题库资料知识宝典-奇虎360 2015校园招聘C++研发工程师笔试题.zip
嵌入式八股文面试题库资料知识宝典-腾讯2014校园招聘C语言笔试题(附答案).zip
双种群变异策略改进RWCE算法优化换热网络.pdf
内容概要:本文详细介绍了基于瞬时无功功率理论的三电平有源电力滤波器(APF)仿真研究。主要内容涵盖并联型APF的工作原理、三相三电平NPC结构、谐波检测方法(ipiq)、双闭环控制策略(电压外环+电流内环PI控制)以及SVPWM矢量调制技术。仿真结果显示,在APF投入前后,电网电流THD从21.9%降至3.77%,显著提高了电能质量。 适用人群:从事电力系统研究、电力电子技术开发的专业人士,尤其是对有源电力滤波器及其仿真感兴趣的工程师和技术人员。 使用场景及目标:适用于需要解决电力系统中谐波污染和无功补偿问题的研究项目。目标是通过仿真验证APF的有效性和可行性,优化电力系统的电能质量。 其他说明:文中提到的仿真模型涉及多个关键模块,如三相交流电压模块、非线性负载、信号采集模块、LC滤波器模块等,这些模块的设计和协同工作对于实现良好的谐波抑制和无功补偿至关重要。
内容概要:本文探讨了在工业自动化和物联网交汇背景下,构建OPC DA转MQTT网关软件的需求及其具体实现方法。文中详细介绍了如何利用Python编程语言及相关库(如OpenOPC用于读取OPC DA数据,paho-mqtt用于MQTT消息传递),完成从OPC DA数据解析、格式转换到最终通过MQTT协议发布数据的关键步骤。此外,还讨论了针对不良网络环境下数据传输优化措施以及后续测试验证过程。 适合人群:从事工业自动化系统集成、物联网项目开发的技术人员,特别是那些希望提升跨协议数据交换能力的专业人士。 使用场景及目标:适用于需要在不同通信协议间建立高效稳定的数据通道的应用场合,比如制造业生产线监控、远程设备管理等。主要目的是克服传统有线网络限制,实现在不稳定无线网络条件下仍能保持良好性能的数据传输。 其他说明:文中提供了具体的代码片段帮助理解整个流程,并强调了实际部署过程中可能遇到的问题及解决方案。