`
guoke456
  • 浏览: 9585 次
  • 性别: Icon_minigender_1
  • 来自: 重庆
社区版块
存档分类
最新评论

spark 参数

阅读更多
从其他地方拷贝的,自己存一份 http://guoke456.iteye.com/admin/blogs/2372445
以下是整理的Spark中的一些配置参数,官方文档请参考Spark Configuration。

Spark提供三个位置用来配置系统:

Spark属性:控制大部分的应用程序参数,可以用SparkConf对象或者Java系统属性设置
环境变量:可以通过每个节点的 conf/spark-env.sh脚本设置。例如IP地址、端口等信息
日志配置:可以通过log4j.properties配置
Spark属性
Spark属性控制大部分的应用程序设置,并且为每个应用程序分别配置它。这些属性可以直接在SparkConf上配置,然后传递给SparkContext。SparkConf 允许你配置一些通用的属性(如master URL、应用程序名称等等)以及通过set()方法设置的任意键值对。例如,我们可以用如下方式创建一个拥有两个线程的应用程序。

val conf = new SparkConf()
             .setMaster("local[2]")
             .setAppName("CountingSheep")
             .set("spark.executor.memory", "1g")
val sc = new SparkContext(conf)
动态加载Spark属性

在一些情况下,你可能想在SparkConf中避免硬编码确定的配置。例如,你想用不同的master或者不同的内存数运行相同的应用程序。Spark允许你简单地创建一个空conf。

val sc = new SparkContext(new SparkConf())
然后你在运行时设置变量:

./bin/spark-submit --name "My app" --master local[4] --conf spark.shuffle.spill=false
  --conf "spark.executor.extraJavaOptions=-XX:+PrintGCDetails -XX:+PrintGCTimeStamps" myApp.jar
Spark shell和spark-submit工具支持两种方式动态加载配置。第一种方式是命令行选项,例如--master,如上面shell显示的那样。spark-submit可以接受任何Spark属性,用--conf参数表示。但是那些参与Spark应用程序启动的属性要用特定的参数表示。运行./bin/spark-submit --help将会显示选项的整个列表。

bin/spark-submit也会从conf/spark-defaults.conf中读取配置选项,这个配置文件中,每一行都包含一对以空格或者等号分开的键和值。例如:

spark.master            spark://5.6.7.8:7077
spark.executor.memory   512m
spark.eventLog.enabled  true
spark.serializer        org.apache.spark.serializer.KryoSerializer
任何标签指定的值或者在配置文件中的值将会传递给应用程序,并且通过SparkConf合并这些值。在SparkConf上设置的属性具有最高的优先级,其次是传递给spark-submit或者spark-shell的属性值,最后是spark-defaults.conf文件中的属性值。

优先级顺序:

SparkConf > CLI > spark-defaults.conf
查看Spark属性

在http://<driver>:4040上的应用程序Web UI在Environment标签中列出了所有的Spark属性。这对你确保设置的属性的正确性是很有用的。

注意:只有通过spark-defaults.conf, SparkConf以及命令行直接指定的值才会显示。对于其它的配置属性,你可以认为程序用到了默认的值。

可用的属性

控制内部设置的大部分属性都有合理的默认值,一些最通用的选项设置如下:

应用程序属性

属性名称 默认值 含义
spark.app.name (none) 你的应用程序的名字。这将在UI和日志数据中出现
spark.driver.cores 1 driver程序运行需要的cpu内核数
spark.driver.maxResultSize 1g 每个Spark action(如collect)所有分区的序列化结果的总大小限制。设置的值应该不小于1m,0代表没有限制。如果总大小超过这个限制,程序将会终止。大的限制值可能导致driver出现内存溢出错误(依赖于spark.driver.memory和JVM中对象的内存消耗)。
spark.driver.memory 512m driver进程使用的内存数
spark.executor.memory 512m 每个executor进程使用的内存数。和JVM内存串拥有相同的格式(如512m,2g)
spark.extraListeners (none) 注册监听器,需要实现SparkListener
spark.local.dir /tmp Spark中暂存空间的使用目录。在Spark1.0以及更高的版本中,这个属性被SPARK_LOCAL_DIRS(Standalone, Mesos)和LOCAL_DIRS(YARN)环境变量覆盖。
spark.logConf false 当SparkContext启动时,将有效的SparkConf记录为INFO。
spark.master (none) 集群管理器连接的地方
运行环境

属性名称 默认值 含义
spark.driver.extraClassPath (none) 附加到driver的classpath的额外的classpath实体。
spark.driver.extraJavaOptions (none) 传递给driver的JVM选项字符串。例如GC设置或者其它日志设置。注意,在这个选项中设置Spark属性或者堆大小是不合法的。Spark属性需要用--driver-class-path设置。
spark.driver.extraLibraryPath (none) 指定启动driver的JVM时用到的库路径
spark.driver.userClassPathFirst false (实验性)当在driver中加载类时,是否用户添加的jar比Spark自己的jar优先级高。这个属性可以降低Spark依赖和用户依赖的冲突。它现在还是一个实验性的特征。
spark.executor.extraClassPath (none) 附加到executors的classpath的额外的classpath实体。这个设置存在的主要目的是Spark与旧版本的向后兼容问题。用户一般不用设置这个选项
spark.executor.extraJavaOptions (none) 传递给executors的JVM选项字符串。例如GC设置或者其它日志设置。注意,在这个选项中设置Spark属性或者堆大小是不合法的。Spark属性需要用SparkConf对象或者spark-submit脚本用到的spark-defaults.conf文件设置。堆内存可以通过spark.executor.memory设置
spark.executor.extraLibraryPath (none) 指定启动executor的JVM时用到的库路径
spark.executor.logs.rolling.maxRetainedFiles (none) 设置被系统保留的最近滚动日志文件的数量。更老的日志文件将被删除。默认没有开启。
spark.executor.logs.rolling.size.maxBytes (none) executor日志的最大滚动大小。默认情况下没有开启。值设置为字节
spark.executor.logs.rolling.strategy (none) 设置executor日志的滚动(rolling)策略。默认情况下没有开启。可以配置为time和size。对于time,用spark.executor.logs.rolling.time.interval设置滚动间隔;对于size,用spark.executor.logs.rolling.size.maxBytes设置最大的滚动大小
spark.executor.logs.rolling.time.interval daily executor日志滚动的时间间隔。默认情况下没有开启。合法的值是daily, hourly, minutely以及任意的秒。
spark.files.userClassPathFirst false (实验性)当在Executors中加载类时,是否用户添加的jar比Spark自己的jar优先级高。这个属性可以降低Spark依赖和用户依赖的冲突。它现在还是一个实验性的特征。
spark.python.worker.memory 512m 在聚合期间,每个python worker进程使用的内存数。在聚合期间,如果内存超过了这个限制,它将会将数据塞进磁盘中
spark.python.profile false 在Python worker中开启profiling。通过sc.show_profiles()展示分析结果。或者在driver退出前展示分析结果。可以通过sc.dump_profiles(path)将结果dump到磁盘中。如果一些分析结果已经手动展示,那么在driver退出前,它们再不会自动展示
spark.python.profile.dump (none) driver退出前保存分析结果的dump文件的目录。每个RDD都会分别dump一个文件。可以通过ptats.Stats()加载这些文件。如果指定了这个属性,分析结果不会自动展示
spark.python.worker.reuse true 是否重用python worker。如果是,它将使用固定数量的Python workers,而不需要为每个任务fork()一个Python进程。如果有一个非常大的广播,这个设置将非常有用。因为,广播不需要为每个任务从JVM到Python worker传递一次
spark.executorEnv.[EnvironmentVariableName] (none) 通过EnvironmentVariableName添加指定的环境变量到executor进程。用户可以指定多个EnvironmentVariableName,设置多个环境变量
spark.mesos.executor.home driver side SPARK_HOME 设置安装在Mesos的executor上的Spark的目录。默认情况下,executors将使用driver的Spark本地(home)目录,这个目录对它们不可见。注意,如果没有通过 spark.executor.uri指定Spark的二进制包,这个设置才起作用
spark.mesos.executor.memoryOverhead executor memory * 0.07, 最小384m 这个值是spark.executor.memory的补充。它用来计算mesos任务的总内存。另外,有一个7%的硬编码设置。最后的值将选择spark.mesos.executor.memoryOverhead或者spark.executor.memory的7%二者之间的大者
Shuffle行为

属性名称 默认值 含义
spark.reducer.maxMbInFlight 48 从递归任务中同时获取的map输出数据的最大大小(mb)。因为每一个输出都需要我们创建一个缓存用来接收,这个设置代表每个任务固定的内存上限,所以除非你有更大的内存,将其设置小一点
spark.shuffle.blockTransferService netty 实现用来在executor直接传递shuffle和缓存块。有两种可用的实现:netty和nio。基于netty的块传递在具有相同的效率情况下更简单
spark.shuffle.compress true 是否压缩map操作的输出文件。一般情况下,这是一个好的选择。
spark.shuffle.consolidateFiles false 如果设置为”true”,在shuffle期间,合并的中间文件将会被创建。创建更少的文件可以提供文件系统的shuffle的效率。这些shuffle都伴随着大量递归任务。当用ext4和dfs文件系统时,推荐设置为”true”。在ext3中,因为文件系统的限制,这个选项可能机器(大于8核)降低效率
spark.shuffle.file.buffer.kb 32 每个shuffle文件输出流内存内缓存的大小,单位是kb。这个缓存减少了创建只中间shuffle文件中磁盘搜索和系统访问的数量
spark.shuffle.io.maxRetries 3 Netty only,自动重试次数
spark.shuffle.io.numConnectionsPerPeer 1 Netty only
spark.shuffle.io.preferDirectBufs true Netty only
spark.shuffle.io.retryWait 5 Netty only
spark.shuffle.manager sort 它的实现用于shuffle数据。有两种可用的实现:sort和hash。基于sort的shuffle有更高的内存使用率
spark.shuffle.memoryFraction 0.2 如果spark.shuffle.spill为true,shuffle中聚合和合并组操作使用的java堆内存占总内存的比重。在任何时候,shuffles使用的所有内存内maps的集合大小都受这个限制的约束。超过这个限制,spilling数据将会保存到磁盘上。如果spilling太过频繁,考虑增大这个值
spark.shuffle.sort.bypassMergeThreshold 200 (Advanced) In the sort-based shuffle manager, avoid merge-sorting data if there is no map-side aggregation and there are at most this many reduce partitions
spark.shuffle.spill true 如果设置为”true”,通过将多出的数据写入磁盘来限制内存数。通过spark.shuffle.memoryFraction来指定spilling的阈值
spark.shuffle.spill.compress true 在shuffle时,是否将spilling的数据压缩。压缩算法通过spark.io.compression.codec指定。
Spark UI

属性名称 默认值 含义
spark.eventLog.compress false 是否压缩事件日志。需要spark.eventLog.enabled为true
spark.eventLog.dir file:///tmp/spark-events Spark事件日志记录的基本目录。在这个基本目录下,Spark为每个应用程序创建一个子目录。各个应用程序记录日志到直到的目录。用户可能想设置这为统一的地点,像HDFS一样,所以历史文件可以通过历史服务器读取
spark.eventLog.enabled false 是否记录Spark的事件日志。这在应用程序完成后,重新构造web UI是有用的
spark.ui.killEnabled true 运行在web UI中杀死stage和相应的job
spark.ui.port 4040 你的应用程序dashboard的端口。显示内存和工作量数据
spark.ui.retainedJobs 1000 在垃圾回收之前,Spark UI和状态API记住的job数
spark.ui.retainedStages 1000 在垃圾回收之前,Spark UI和状态API记住的stage数
压缩和序列化

属性名称 默认值 含义
spark.broadcast.compress true 在发送广播变量之前是否压缩它
spark.closure.serializer org.apache.spark.serializer.JavaSerializer 闭包用到的序列化类。目前只支持java序列化器
spark.io.compression.codec snappy 压缩诸如RDD分区、广播变量、shuffle输出等内部数据的编码解码器。默认情况下,Spark提供了三种选择:lz4、lzf和snappy,你也可以用完整的类名来制定。
spark.io.compression.lz4.block.size 32768 LZ4压缩中用到的块大小。降低这个块的大小也会降低shuffle内存使用率
spark.io.compression.snappy.block.size 32768 Snappy压缩中用到的块大小。降低这个块的大小也会降低shuffle内存使用率
spark.kryo.classesToRegister (none) 如果你用Kryo序列化,给定的用逗号分隔的自定义类名列表表示要注册的类
spark.kryo.referenceTracking true 当用Kryo序列化时,跟踪是否引用同一对象。如果你的对象图有环,这是必须的设置。如果他们包含相同对象的多个副本,这个设置对效率是有用的。如果你知道不在这两个场景,那么可以禁用它以提高效率
spark.kryo.registrationRequired false 是否需要注册为Kyro可用。如果设置为true,然后如果一个没有注册的类序列化,Kyro会抛出异常。如果设置为false,Kryo将会同时写每个对象和其非注册类名。写类名可能造成显著地性能瓶颈。
spark.kryo.registrator (none) 如果你用Kryo序列化,设置这个类去注册你的自定义类。如果你需要用自定义的方式注册你的类,那么这个属性是有用的。否则spark.kryo.classesToRegister会更简单。它应该设置一个继承自KryoRegistrator的类
spark.kryoserializer.buffer.max.mb 64 Kryo序列化缓存允许的最大值。这个值必须大于你尝试序列化的对象
spark.kryoserializer.buffer.mb 0.064 Kyro序列化缓存的大小。这样worker上的每个核都有一个缓存。如果有需要,缓存会涨到spark.kryoserializer.buffer.max.mb设置的值那么大。
spark.rdd.compress true 是否压缩序列化的RDD分区。在花费一些额外的CPU时间的同时节省大量的空间
spark.serializer org.apache.spark.serializer.JavaSerializer 序列化对象使用的类。默认的Java序列化类可以序列化任何可序列化的java对象但是它很慢。所有我们建议用org.apache.spark.serializer.KryoSerializer
spark.serializer.objectStreamReset 100 当用org.apache.spark.serializer.JavaSerializer序列化时,序列化器通过缓存对象防止写多余的数据,然而这会造成这些对象的垃圾回收停止。通过请求’reset’,你从序列化器中flush这些信息并允许收集老的数据。为了关闭这个周期性的reset,你可以将值设为-1。默认情况下,每一百个对象reset一次
运行时行为

属性名称 默认值 含义
spark.broadcast.blockSize 4096 TorrentBroadcastFactory传输的块大小,太大值会降低并发,太小的值会出现性能瓶颈
spark.broadcast.factory org.apache.spark.broadcast.TorrentBroadcastFactory broadcast实现类
spark.cleaner.ttl (infinite) spark记录任何元数据(stages生成、task生成等)的持续时间。定期清理可以确保将超期的元数据丢弃,这在运行长时间任务是很有用的,如运行7*24的sparkstreaming任务。RDD持久化在内存中的超期数据也会被清理
spark.default.parallelism 本地模式:机器核数;Mesos:8;其他:max(executor的core,2) 如果用户不设置,系统使用集群中运行shuffle操作的默认任务数(groupByKey、 reduceByKey等)
spark.executor.heartbeatInterval 10000 executor 向 the driver 汇报心跳的时间间隔,单位毫秒
spark.files.fetchTimeout 60 driver 程序获取通过SparkContext.addFile()添加的文件时的超时时间,单位秒
spark.files.useFetchCache true 获取文件时是否使用本地缓存
spark.files.overwrite false 调用SparkContext.addFile()时候是否覆盖文件
spark.hadoop.cloneConf false 每个task是否克隆一份hadoop的配置文件
spark.hadoop.validateOutputSpecs true 是否校验输出
spark.storage.memoryFraction 0.6 Spark内存缓存的堆大小占用总内存比例,该值不能大于老年代内存大小,默认值为0.6,但是,如果你手动设置老年代大小,你可以增加该值
spark.storage.memoryMapThreshold 2097152 内存块大小
spark.storage.unrollFraction 0.2 Fraction of spark.storage.memoryFraction to use for unrolling blocks in memory.
spark.tachyonStore.baseDir System.getProperty(“java.io.tmpdir”) Tachyon File System临时目录
spark.tachyonStore.url tachyon://localhost:19998 Tachyon File System URL
网络

属性名称 默认值 含义
spark.driver.host (local hostname) driver监听的主机名或者IP地址。这用于和executors以及独立的master通信
spark.driver.port (random) driver监听的接口。这用于和executors以及独立的master通信
spark.fileserver.port (random) driver的文件服务器监听的端口
spark.broadcast.port (random) driver的HTTP广播服务器监听的端口
spark.replClassServer.port (random) driver的HTTP类服务器监听的端口
spark.blockManager.port (random) 块管理器监听的端口。这些同时存在于driver和executors
spark.executor.port (random) executor监听的端口。用于与driver通信
spark.port.maxRetries 16 当绑定到一个端口,在放弃前重试的最大次数
spark.akka.frameSize 10 在”control plane”通信中允许的最大消息大小。如果你的任务需要发送大的结果到driver中,调大这个值
spark.akka.threads 4 通信的actor线程数。当driver有很多CPU核时,调大它是有用的
spark.akka.timeout 100 Spark节点之间的通信超时。单位是秒
spark.akka.heartbeat.pauses 6000 This is set to a larger value to disable failure detector that comes inbuilt akka. It can be enabled again, if you plan to use this feature (Not recommended). Acceptable heart beat pause in seconds for akka. This can be used to control sensitivity to gc pauses. Tune this in combination of spark.akka.heartbeat.interval and spark.akka.failure-detector.threshold if you need to.
spark.akka.failure-detector.threshold 300.0 This is set to a larger value to disable failure detector that comes inbuilt akka. It can be enabled again, if you plan to use this feature (Not recommended). This maps to akka’s akka.remote.transport-failure-detector.threshold. Tune this in combination of spark.akka.heartbeat.pauses and spark.akka.heartbeat.interval if you need to.
spark.akka.heartbeat.interval 1000 This is set to a larger value to disable failure detector that comes inbuilt akka. It can be enabled again, if you plan to use this feature (Not recommended). A larger interval value in seconds reduces network overhead and a smaller value ( ~ 1 s) might be more informative for akka’s failure detector. Tune this in combination of spark.akka.heartbeat.pauses and spark.akka.failure-detector.threshold if you need to. Only positive use case for using failure detector can be, a sensistive failure detector can help evict rogue executors really quick. However this is usually not the case as gc pauses and network lags are expected in a real Spark cluster. Apart from that enabling this leads to a lot of exchanges of heart beats between nodes leading to flooding the network with those.
调度相关属性

属性名称 默认值 含义
spark.task.cpus 1 为每个任务分配的内核数
spark.task.maxFailures 4 Task的最大重试次数
spark.scheduler.mode FIFO Spark的任务调度模式,还有一种Fair模式
spark.cores.max 当应用程序运行在Standalone集群或者粗粒度共享模式Mesos集群时,应用程序向集群请求的最大CPU内核总数(不是指每台机器,而是整个集群)。如果不设置,对于Standalone集群将使用spark.deploy.defaultCores中数值,而Mesos将使用集群中可用的内核
spark.mesos.coarse False 如果设置为true,在Mesos集群中运行时使用粗粒度共享模式
spark.speculation False 以下几个参数是关于Spark推测执行机制的相关参数。此参数设定是否使用推测执行机制,如果设置为true则spark使用推测执行机制,对于Stage中拖后腿的Task在其他节点中重新启动,并将最先完成的Task的计算结果最为最终结果
spark.speculation.interval 100 Spark多长时间进行检查task运行状态用以推测,以毫秒为单位
spark.speculation.quantile 推测启动前,Stage必须要完成总Task的百分比
spark.speculation.multiplier 1.5 比已完成Task的运行速度中位数慢多少倍才启用推测
spark.locality.wait 3000 以下几个参数是关于Spark数据本地性的。本参数是以毫秒为单位启动本地数据task的等待时间,如果超出就启动下一本地优先级别的task。该设置同样可以应用到各优先级别的本地性之间(本地进程 -> 本地节点 -> 本地机架 -> 任意节点 ),当然,也可以通过spark.locality.wait.node等参数设置不同优先级别的本地性
spark.locality.wait.process spark.locality.wait 本地进程级别的本地等待时间
spark.locality.wait.node spark.locality.wait 本地节点级别的本地等待时间
spark.locality.wait.rack spark.locality.wait 本地机架级别的本地等待时间
spark.scheduler.revive.interval 1000 复活重新获取资源的Task的最长时间间隔(毫秒),发生在Task因为本地资源不足而将资源分配给其他Task运行后进入等待时间,如果这个等待时间内重新获取足够的资源就继续计算
Dynamic Allocation

属性名称 默认值 含义
spark.dynamicAllocation.enabled false 是否开启动态资源搜集
spark.dynamicAllocation.executorIdleTimeout 600
spark.dynamicAllocation.initialExecutors spark.dynamicAllocation.minExecutors
spark.dynamicAllocation.maxExecutors Integer.MAX_VALUE
spark.dynamicAllocation.minExecutors 0
spark.dynamicAllocation.schedulerBacklogTimeout 5
spark.dynamicAllocation.sustainedSchedulerBacklogTimeout schedulerBacklogTimeout
安全

属性名称 默认值 含义
spark.authenticate false 是否Spark验证其内部连接。如果不是运行在YARN上,请看spark.authenticate.secret
spark.authenticate.secret None 设置Spark两个组件之间的密匙验证。如果不是运行在YARN上,但是需要验证,这个选项必须设置
spark.core.connection.auth.wait.timeout 30 连接时等待验证的实际。单位为秒
spark.core.connection.ack.wait.timeout 60 连接等待回答的时间。单位为秒。为了避免不希望的超时,你可以设置更大的值
spark.ui.filters None 应用到Spark web UI的用于过滤类名的逗号分隔的列表。过滤器必须是标准的javax servlet Filter。通过设置java系统属性也可以指定每个过滤器的参数。spark.<class name of filter>.params='param1=value1,param2=value2'。例如-Dspark.ui.filters=com.test.filter1、-Dspark.com.test.filter1.params='param1=foo,param2=testing'
spark.acls.enable false 是否开启Spark acls。如果开启了,它检查用户是否有权限去查看或修改job。UI利用使用过滤器验证和设置用户
spark.ui.view.acls empty 逗号分隔的用户列表,列表中的用户有查看Spark web UI的权限。默认情况下,只有启动Spark job的用户有查看权限
spark.modify.acls empty 逗号分隔的用户列表,列表中的用户有修改Spark job的权限。默认情况下,只有启动Spark job的用户有修改权限
spark.admin.acls empty 逗号分隔的用户或者管理员列表,列表中的用户或管理员有查看和修改所有Spark job的权限。如果你运行在一个共享集群,有一组管理员或开发者帮助debug,这个选项有用
加密

属性名称 默认值 含义
spark.ssl.enabled false 是否开启ssl
spark.ssl.enabledAlgorithms Empty JVM支持的加密算法列表,逗号分隔
spark.ssl.keyPassword None
spark.ssl.keyStore None
spark.ssl.keyStorePassword None
spark.ssl.protocol None
spark.ssl.trustStore None
spark.ssl.trustStorePassword None
Spark Streaming

属性名称 默认值 含义
spark.streaming.blockInterval 200 在这个时间间隔(ms)内,通过Spark Streaming receivers接收的数据在保存到Spark之前,chunk为数据块。推荐的最小值为50ms
spark.streaming.receiver.maxRate infinite 每秒钟每个receiver将接收的数据的最大记录数。有效的情况下,每个流将消耗至少这个数目的记录。设置这个配置为0或者-1将会不作限制
spark.streaming.receiver.writeAheadLogs.enable false Enable write ahead logs for receivers. All the input data received through receivers will be saved to write ahead logs that will allow it to be recovered after driver failures
spark.streaming.unpersist true 强制通过Spark Streaming生成并持久化的RDD自动从Spark内存中非持久化。通过Spark Streaming接收的原始输入数据也将清除。设置这个属性为false允许流应用程序访问原始数据和持久化RDD,因为它们没有被自动清除。但是它会造成更高的内存花费
集群管理

Spark On YARN

属性名称 默认值 含义
spark.yarn.am.memory 512m client 模式时,am的内存大小;cluster模式时,使用spark.driver.memory变量
spark.driver.cores 1 claster模式时,driver使用的cpu核数,这时候driver运行在am中,其实也就是am和核数;client模式时,使用spark.yarn.am.cores变量
spark.yarn.am.cores 1 client 模式时,am的cpu核数
spark.yarn.am.waitTime 100000 启动时等待时间
spark.yarn.submit.file.replication 3 应用程序上传到HDFS的文件的副本数
spark.yarn.preserve.staging.files False 若为true,在job结束后,将stage相关的文件保留而不是删除
spark.yarn.scheduler.heartbeat.interval-ms 5000 Spark AppMaster发送心跳信息给YARN RM的时间间隔
spark.yarn.max.executor.failures 2倍于executor数,最小值3 导致应用程序宣告失败的最大executor失败次数
spark.yarn.applicationMaster.waitTries 10 RM等待Spark AppMaster启动重试次数,也就是SparkContext初始化次数。超过这个数值,启动失败
spark.yarn.historyServer.address Spark history server的地址(不要加 http://)。这个地址会在Spark应用程序完成后提交给YARN RM,然后RM将信息从RM UI写到history server UI上。
spark.yarn.dist.archives (none)
spark.yarn.dist.files (none)
spark.executor.instances 2 executor实例个数
spark.yarn.executor.memoryOverhead executorMemory * 0.07, with minimum of 384 executor的堆内存大小设置
spark.yarn.driver.memoryOverhead driverMemory * 0.07, with minimum of 384 driver的堆内存大小设置
spark.yarn.am.memoryOverhead AM memory * 0.07, with minimum of 384 am的堆内存大小设置,在client模式时设置
spark.yarn.queue default 使用yarn的队列
spark.yarn.jar (none)
spark.yarn.access.namenodes (none)
spark.yarn.appMasterEnv.[EnvironmentVariableName] (none) 设置am的环境变量
spark.yarn.containerLauncherMaxThreads 25 am启动executor的最大线程数
spark.yarn.am.extraJavaOptions (none)
spark.yarn.maxAppAttempts yarn.resourcemanager.am.max-attempts in YARN am重试次数
Spark on Mesos

使用较少,参考Running Spark on Mesos。

Spark Standalone Mode

参考Spark Standalone Mode。

Spark History Server

当你运行Spark Standalone Mode或者Spark on Mesos模式时,你可以通过Spark History Server来查看job运行情况。

Spark History Server的环境变量:

属性名称 含义
SPARK_DAEMON_MEMORY Memory to allocate to the history server (default: 512m).
SPARK_DAEMON_JAVA_OPTS JVM options for the history server (default: none).
SPARK_PUBLIC_DNS
SPARK_HISTORY_OPTS 配置 spark.history.* 属性
Spark History Server的属性:

属性名称 默认 含义
spark.history.provider org.apache.spark.deploy.history.FsHistoryProvide 应用历史后端实现的类名。 目前只有一个实现, 由Spark提供, 它查看存储在文件系统里面的应用日志
spark.history.fs.logDirectory file:/tmp/spark-events
spark.history.updateInterval 10 以秒为单位,多长时间Spark history server显示的信息进行更新。每次更新都会检查持久层事件日志的任何变化。
spark.history.retainedApplications 50 在Spark history server上显示的最大应用程序数量,如果超过这个值,旧的应用程序信息将被删除。
spark.history.ui.port 18080 官方版本中,Spark history server的默认访问端口
spark.history.kerberos.enabled false 是否使用kerberos方式登录访问history server,对于持久层位于安全集群的HDFS上是有用的。如果设置为true,就要配置下面的两个属性。
spark.history.kerberos.principal 空 用于Spark history server的kerberos主体名称
spark.history.kerberos.keytab 空 用于Spark history server的kerberos keytab文件位置
spark.history.ui.acls.enable false 授权用户查看应用程序信息的时候是否检查acl。如果启用,只有应用程序所有者和spark.ui.view.acls指定的用户可以查看应用程序信息;如果禁用,不做任何检查。
环境变量

通过环境变量配置确定的Spark设置。环境变量从Spark安装目录下的conf/spark-env.sh脚本读取(或者windows的conf/spark-env.cmd)。在独立的或者Mesos模式下,这个文件可以给机器确定的信息,如主机名。当运行本地应用程序或者提交脚本时,它也起作用。

注意,当Spark安装时,conf/spark-env.sh默认是不存在的。你可以复制conf/spark-env.sh.template创建它。

可以在spark-env.sh中设置如下变量:

环境变量 含义
JAVA_HOME Java安装的路径
PYSPARK_PYTHON PySpark用到的Python二进制执行文件路径
SPARK_LOCAL_IP 机器绑定的IP地址
SPARK_PUBLIC_DNS 你Spark应用程序通知给其他机器的主机名
除了以上这些,Spark standalone cluster scripts也可以设置一些选项。例如每台机器使用的核数以及最大内存。

因为spark-env.sh是shell脚本,其中的一些可以以编程方式设置。例如,你可以通过特定的网络接口计算SPARK_LOCAL_IP。

配置日志

Spark用log4j logging。你可以通过在conf目录下添加log4j.properties文件来配置。一种方法是复制log4j.properties.template文件。
分享到:
评论

相关推荐

    Spark 性能相关参数配置详解

    Spark 性能相关参数配置详解

    spark

    8. **性能调优**:学习如何配置Spark参数以提高性能,如executor数量、内存大小等。 9. **Spark与Hadoop的集成**:了解如何在Hadoop生态系统中使用Spark进行数据处理。 10. **Spark工具和生态**:熟悉如SparkSubmit...

    spark-2.4.5.tgz

    在实际应用中,开发者还需要了解如何配置 Spark 参数以优化性能,例如设置 executor 内存、调整并发度等。同时,熟悉 YARN 或 Mesos 等资源管理器的使用,可以帮助在集群环境中更好地调度和管理 Spark 应用。 总之...

    Spark官方文档指南chm版本

    在性能优化方面,文档会讲解如何配置Spark参数以提高性能,例如调整executor的数量、内存大小,以及如何使用shuffle操作时的分区策略。另外,Spark的容错机制,如检查点和宽依赖的重新计算,也会有详细的说明。 ...

    spark-2.0.0-bin-hadoop2.7.tgz.zip

    解压后,你会看到目录结构包括bin、conf、lib等,其中bin目录下有可执行的Spark命令,conf目录用于配置Spark参数,lib目录则包含了Spark的库文件和其他依赖。 总的来说,Spark 2.0.0提供了强大的大数据处理能力,...

    Redis 中spark参数executor-cores引起的异常解决办法

    主要介绍了Redis 中spark参数executor-cores引起的异常解决办法的相关资料,需要的朋友可以参考下

    Spark编程挑战题目

    - 通过调整Spark参数(如shuffle partitions的数量)来进一步优化性能。 - 利用缓存机制减少重复计算。 **工具与框架:** - **Apache Spark:** 主要处理框架。 - **Spark RDD:** 基于RDD实现高效去重逻辑。 - *...

    spark 配置参数优化

    spark配置参数优化,spark配置参数优化,spark配置参数优化,spark配置参数优化

    1-7+基于阿里云GPU加速的Spark大数据应用.pdf

    ACSP(阿里云Spark GPU加速引擎)可以自动调优Spark参数,优化Spark SQL应用参数,优化Spark Shuffle,优化算子,优化GPU拓扑,并且可以根据阿里云GPU服务器实例规格自动生成最佳的静态参数,实现带宽优化和静态调优...

    spark全面精讲视频代码,内涵解压密码

    3. **性能调优**:分享如何配置Spark参数以提升性能,例如设置Executor的数量、内存大小等。 4. **案例研究**:分析实际项目中Spark的应用,比如日志分析、推荐系统等。 通过学习这些资料,你不仅可以掌握Spark的...

    spark性能调优参数总结

    在Spark中,性能调优的参数非常丰富,其中Shuffle操作是影响Spark性能的一个重要因素。Shuffle操作涉及到排序、磁盘IO、网络IO等多种CPU或IO密集型操作。为了更好地管理和优化Shuffle操作,Spark设计了一个可插拔的...

    spark入门课程

    我们将讨论如何配置Spark参数以提升运行效率,如何利用Spark的缓存机制减少数据读取,以及如何通过分区策略来改善任务执行。同时,我们还会探索Spark SQL的性能优化技巧,包括使用Catalyst优化器和避免数据序列化...

    大数据组件 Spark 面试题 + Spark 高频面试题

    Spark是大数据处理领域中的一种重要工具,以其高效、快速的计算性能受到广泛...同时,解决数据倾斜问题也是实际工作中的一大挑战,这需要深入理解数据分布和并行处理的原理,合理配置Spark参数,以及优化数据处理逻辑。

    七个PDF理解Spark

    在性能调优方面,PDF会涵盖如何配置Spark参数,比如executor的数量和大小、内存分配、网络参数等,以适应不同的工作负载。此外,还会讲解如何利用动态资源调度和Backpressure机制来应对数据不均匀和延迟问题。 最后...

    spark快速大数据分析

    本书会详细介绍如何配置和调整Spark参数,以最大化性能。 10. **案例研究**:书中通过丰富的实例,展示了如何使用Spark解决实际的大数据分析问题,帮助读者将理论知识转化为实际操作技能。 总之,《Spark快速大...

    Spark 性能相关参数配置详解1

    Spark 性能相关参数配置详解

    Spark中文实战图鉴(下)-让企业大数据平台性能更优.zip

    4. **Spark性能优化**:通过配置Spark参数,如executor数量、内存分配、shuffle管理等,可以显著提升处理性能。理解这些参数的作用和调优策略,是实现实战应用中性能提升的重要一环。 5. **Spark Streaming处理流式...

    Spark大数据处理:技术、应用与性能优化.pdf 高清带目录

    内容包括配置硬件环境、选择合适的部署模式(如standalone、Mesos、YARN或Kubernetes),以及配置Spark参数以优化资源利用率。读者将学习到如何安装Scala、Java和Python等开发环境,以及如何使用Spark Shell进行交互...

    大数据技术分享 Spark技术讲座 Apache Spark中的大规模远程信息处理分析 共31页.pdf

    - **优化Spark性能**:通过合理配置Spark参数,提高数据处理效率。 - **分布式计算**:利用分布式计算框架,如Apache Hadoop或Apache Spark,将数据处理任务分布到多个节点上并行执行,提高处理速度。 - **数据分层*...

Global site tag (gtag.js) - Google Analytics