- 浏览: 599630 次
- 性别:
- 来自: 厦门
文章分类
- 全部博客 (669)
- oracle (36)
- java (98)
- spring (48)
- UML (2)
- hibernate (10)
- tomcat (7)
- 高性能 (11)
- mysql (25)
- sql (19)
- web (42)
- 数据库设计 (4)
- Nio (6)
- Netty (8)
- Excel (3)
- File (4)
- AOP (1)
- Jetty (1)
- Log4J (4)
- 链表 (1)
- Spring Junit4 (3)
- Autowired Resource (0)
- Jackson (1)
- Javascript (58)
- Spring Cache (2)
- Spring - CXF (2)
- Spring Inject (2)
- 汉字拼音 (3)
- 代理模式 (3)
- Spring事务 (4)
- ActiveMQ (6)
- XML (3)
- Cglib (2)
- Activiti (15)
- 附件问题 (1)
- javaMail (1)
- Thread (19)
- 算法 (6)
- 正则表达式 (3)
- 国际化 (2)
- Json (3)
- EJB (3)
- Struts2 (1)
- Maven (7)
- Mybatis (7)
- Redis (8)
- DWR (1)
- Lucene (2)
- Linux (73)
- 杂谈 (2)
- CSS (13)
- Linux服务篇 (3)
- Kettle (9)
- android (81)
- protocol (2)
- EasyUI (6)
- nginx (2)
- zookeeper (6)
- Hadoop (41)
- cache (7)
- shiro (3)
- HBase (12)
- Hive (8)
- Spark (15)
- Scala (16)
- YARN (3)
- Kafka (5)
- Sqoop (2)
- Pig (3)
- Vue (6)
- sprint boot (19)
- dubbo (2)
- mongodb (2)
最新评论
带有 MapReduce 的 Apache Hadoop 是分布式数据处理的骨干力量。借助其独特的横向扩展物理集群架构和由 Google 最初开发的精细处理框架,Hadoop 在大数据处理的全新领域迎来了爆炸式增长。Hadoop 还开发了一个丰富多样的应用程序生态系统,包括 Apache Pig(一种强大的脚本语言)和 Apache Hive(一个具有类似 SQL 界面的数据仓库解决方案)。
不幸的是,这个生态系统构建于一种编程模式之上,无法解决大数据中的所有问题。MapReduce 提供了一种特定的编程模型,尽管已通过 Pig 和 Hive 等工具得到了简化,但它不是大数据的灵丹妙药。我们首先介绍一下 MapReduce 2.0 (MRv2) — 或 Yet Another Resource Negotiator (YARN) — 并快速回顾一下 YARN 之前的 Hadoop 架构。
Hadoop 和 MRv1 简单介绍
Hadoop 集群可从单一节点(其中所有 Hadoop 实体都在同一个节点上运行)扩展到数千个节点(其中的功能分散在各个节点之间,以增加并行处理活动)。图 1 演示了一个 Hadoop 集群的高级组件。
一个 Hadoop 集群可分解为两个抽象实体:MapReduce 引擎和分布式文件系统。MapReduce 引擎能够在整个集群上执行 Map 和 Reduce 任务并报告结果,其中分布式文件系统提供了一种存储模式,可跨节点复制数据以进行处理。Hadoop 分布式文件系统 (HDFS) 通过定义来支持大型文件(其中每个文件通常为 64 MB 的倍数)。
当一个客户端向一个 Hadoop 集群发出一个请求时,此请求由 JobTracker 管理。JobTracker 与 NameNode 联合将工作分发到离它所处理的数据尽可能近的位置。NameNode 是文件系统的主系统,提供元数据服务来执行数据分发和复制。JobTracker 将 Map 和 Reduce 任务安排到一个或多个 TaskTracker 上的可用插槽中。TaskTracker 与 DataNode(分布式文件系统)一起对来自 DataNode 的数据执行 Map 和 Reduce 任务。当 Map 和 Reduce 任务完成时,TaskTracker 会告知 JobTracker,后者确定所有任务何时完成并最终告知客户作业已完成。
从 图 1 中可以看到,MRv1 实现了一个相对简单的集群管理器来执行 MapReduce 处理。MRv1 提供了一种分层的集群管理模式,其中大数据作业以单个 Map 和 Reduce 任务的形式渗入一个集群,并最后聚合成作业来报告给用户。但这种简单性有一些隐秘,不过也不是很隐秘的问题。
MRv1 的缺陷
MapReduce 的第一个版本既有优点也有缺点。MRv1 是目前使用的标准的大数据处理系统。但是,这种架构存在不足,主要表现在大型集群上。当集群包含的节点超过 4,000 个时(其中每个节点可能是多核的),就会表现出一定的不可预测性。其中一个最大的问题是级联故障,由于要尝试复制数据和重载活动的节点,所以一个故障会通过网络泛洪形式导致整个集群严重恶化。
但 MRv1 的最大问题是多租户。随着集群规模的增加,一种可取的方式是为这些集群采用各种不同的模型。MRv1 的节点专用于 Hadoop,所以可以改变它们的用途以用于其他应用程序和工作负载。当大数据和 Hadoop 成为云部署中一个更重要的使用模型时,这种能力也会增强,因为它允许在服务器上对 Hadoop 进行物理化,而无需虚拟化且不会增加管理、计算和输入/输出开销。
我们现在看看 YARN 的新架构,看看它如何支持 MRv2 和其他使用不同处理模型的应用程序。
YARN (MRv2) 简介
为了实现一个 Hadoop 集群的集群共享、可伸缩性和可靠性。设计人员采用了一种分层的集群框架方法。具体来讲,特定于 MapReduce 的功能已替换为一组新的守护程序,将该框架向新的处理模型开放。
回想一下,由于限制了扩展以及网络开销所导致的某些故障模式,MRv1 JobTracker 和 TaskTracker 方法曾是一个重要的缺陷。这些守护程序也是 MapReduce 处理模型所独有的。为了消除这一限制,JobTracker 和 TaskTracker 已从 YARN 中删除,取而代之的是一组对应用程序不可知的新守护程序。
YARN 分层结构的本质是 ResourceManager。这个实体控制整个集群并管理应用程序向基础计算资源的分配。
[b]ResourceManager主要做两件事情,一件是资源调度器, 另一件是 appMaster、 NM 的管理。
[/b]ResourceManager 将各个资源部分(计算、内存、带宽等)精心安排给基础 NodeManager(YARN 的每节点代理)。ResourceManager 还与 ApplicationMaster 一起分配资源,与 NodeManager 一起启动和监视它们的基础应用程序。在此上下文中,ApplicationMaster 承担了以前的 TaskTracker 的一些角色,ResourceManager 承担了 JobTracker 的角色。
ApplicationMaster 管理一个在 YARN 内运行的应用程序的每个实例。ApplicationMaster 负责协调来自 ResourceManager 的资源,并通过 NodeManager 监视容器的执行和资源使用(CPU、内存等的资源分配)。请注意,尽管目前的资源更加传统(CPU 核心、内存),但未来会带来基于手头任务的新资源类型(比如图形处理单元或专用处理设备)。从 YARN 角度讲,ApplicationMaster 是用户代码,因此存在潜在的安全问题。YARN 假设 ApplicationMaster 存在错误或者甚至是恶意的,因此将它们当作无特权的代码对待。
NodeManager 管理一个 YARN 集群中的每个节点。
[size=large][color=red]主要做三事情: 管理 container、 资源下载、 健康检测后汇报
NodeManager 提供针对集群中每个节点的服务,从监督对一个容器的终生管理到监视资源和跟踪节点健康。MRv1 通过插槽管理 Map 和 Reduce 任务的执行,而 NodeManager 管理抽象容器,这些容器代表着可供一个特定应用程序使用的针对每个节点的资源。YARN 继续使用 HDFS 层。它的主要 NameNode 用于元数据服务,而 DataNode 用于分散在一个集群中的复制存储服务。
要使用一个 YARN 集群,首先需要来自包含一个应用程序的客户的请求。ResourceManager 协商一个容器的必要资源,启动一个 ApplicationMaster 来表示已提交的应用程序。通过使用一个资源请求协议,ApplicationMaster 协商每个节点上供应用程序使用的资源容器。执行应用程序时,ApplicationMaster 监视容器直到完成。当应用程序完成时,ApplicationMaster 从 ResourceManager 注销其容器,执行周期就完成了。
通过这些讨论,应该明确的一点是,旧的 Hadoop 架构受到了 JobTracker 的高度约束,JobTracker 负责整个集群的资源管理和作业调度。新的 YARN 架构打破了这种模型,允许一个新 ResourceManager 管理跨应用程序的资源使用,ApplicationMaster 负责管理作业的执行。这一更改消除了一处瓶颈,还改善了将 Hadoop 集群扩展到比以前大得多的配置的能力。此外,不同于传统的 MapReduce,YARN 允许使用 Message Passing Interface 等标准通信模式,同时执行各种不同的编程模型,包括图形处理、迭代式处理、机器学习和一般集群计算。
不幸的是,这个生态系统构建于一种编程模式之上,无法解决大数据中的所有问题。MapReduce 提供了一种特定的编程模型,尽管已通过 Pig 和 Hive 等工具得到了简化,但它不是大数据的灵丹妙药。我们首先介绍一下 MapReduce 2.0 (MRv2) — 或 Yet Another Resource Negotiator (YARN) — 并快速回顾一下 YARN 之前的 Hadoop 架构。
Hadoop 和 MRv1 简单介绍
Hadoop 集群可从单一节点(其中所有 Hadoop 实体都在同一个节点上运行)扩展到数千个节点(其中的功能分散在各个节点之间,以增加并行处理活动)。图 1 演示了一个 Hadoop 集群的高级组件。
一个 Hadoop 集群可分解为两个抽象实体:MapReduce 引擎和分布式文件系统。MapReduce 引擎能够在整个集群上执行 Map 和 Reduce 任务并报告结果,其中分布式文件系统提供了一种存储模式,可跨节点复制数据以进行处理。Hadoop 分布式文件系统 (HDFS) 通过定义来支持大型文件(其中每个文件通常为 64 MB 的倍数)。
当一个客户端向一个 Hadoop 集群发出一个请求时,此请求由 JobTracker 管理。JobTracker 与 NameNode 联合将工作分发到离它所处理的数据尽可能近的位置。NameNode 是文件系统的主系统,提供元数据服务来执行数据分发和复制。JobTracker 将 Map 和 Reduce 任务安排到一个或多个 TaskTracker 上的可用插槽中。TaskTracker 与 DataNode(分布式文件系统)一起对来自 DataNode 的数据执行 Map 和 Reduce 任务。当 Map 和 Reduce 任务完成时,TaskTracker 会告知 JobTracker,后者确定所有任务何时完成并最终告知客户作业已完成。
从 图 1 中可以看到,MRv1 实现了一个相对简单的集群管理器来执行 MapReduce 处理。MRv1 提供了一种分层的集群管理模式,其中大数据作业以单个 Map 和 Reduce 任务的形式渗入一个集群,并最后聚合成作业来报告给用户。但这种简单性有一些隐秘,不过也不是很隐秘的问题。
MRv1 的缺陷
MapReduce 的第一个版本既有优点也有缺点。MRv1 是目前使用的标准的大数据处理系统。但是,这种架构存在不足,主要表现在大型集群上。当集群包含的节点超过 4,000 个时(其中每个节点可能是多核的),就会表现出一定的不可预测性。其中一个最大的问题是级联故障,由于要尝试复制数据和重载活动的节点,所以一个故障会通过网络泛洪形式导致整个集群严重恶化。
但 MRv1 的最大问题是多租户。随着集群规模的增加,一种可取的方式是为这些集群采用各种不同的模型。MRv1 的节点专用于 Hadoop,所以可以改变它们的用途以用于其他应用程序和工作负载。当大数据和 Hadoop 成为云部署中一个更重要的使用模型时,这种能力也会增强,因为它允许在服务器上对 Hadoop 进行物理化,而无需虚拟化且不会增加管理、计算和输入/输出开销。
我们现在看看 YARN 的新架构,看看它如何支持 MRv2 和其他使用不同处理模型的应用程序。
YARN (MRv2) 简介
为了实现一个 Hadoop 集群的集群共享、可伸缩性和可靠性。设计人员采用了一种分层的集群框架方法。具体来讲,特定于 MapReduce 的功能已替换为一组新的守护程序,将该框架向新的处理模型开放。
回想一下,由于限制了扩展以及网络开销所导致的某些故障模式,MRv1 JobTracker 和 TaskTracker 方法曾是一个重要的缺陷。这些守护程序也是 MapReduce 处理模型所独有的。为了消除这一限制,JobTracker 和 TaskTracker 已从 YARN 中删除,取而代之的是一组对应用程序不可知的新守护程序。
YARN 分层结构的本质是 ResourceManager。这个实体控制整个集群并管理应用程序向基础计算资源的分配。
[b]ResourceManager主要做两件事情,一件是资源调度器, 另一件是 appMaster、 NM 的管理。
[/b]ResourceManager 将各个资源部分(计算、内存、带宽等)精心安排给基础 NodeManager(YARN 的每节点代理)。ResourceManager 还与 ApplicationMaster 一起分配资源,与 NodeManager 一起启动和监视它们的基础应用程序。在此上下文中,ApplicationMaster 承担了以前的 TaskTracker 的一些角色,ResourceManager 承担了 JobTracker 的角色。
ApplicationMaster 管理一个在 YARN 内运行的应用程序的每个实例。ApplicationMaster 负责协调来自 ResourceManager 的资源,并通过 NodeManager 监视容器的执行和资源使用(CPU、内存等的资源分配)。请注意,尽管目前的资源更加传统(CPU 核心、内存),但未来会带来基于手头任务的新资源类型(比如图形处理单元或专用处理设备)。从 YARN 角度讲,ApplicationMaster 是用户代码,因此存在潜在的安全问题。YARN 假设 ApplicationMaster 存在错误或者甚至是恶意的,因此将它们当作无特权的代码对待。
NodeManager 管理一个 YARN 集群中的每个节点。
[size=large][color=red]主要做三事情: 管理 container、 资源下载、 健康检测后汇报
NodeManager 提供针对集群中每个节点的服务,从监督对一个容器的终生管理到监视资源和跟踪节点健康。MRv1 通过插槽管理 Map 和 Reduce 任务的执行,而 NodeManager 管理抽象容器,这些容器代表着可供一个特定应用程序使用的针对每个节点的资源。YARN 继续使用 HDFS 层。它的主要 NameNode 用于元数据服务,而 DataNode 用于分散在一个集群中的复制存储服务。
要使用一个 YARN 集群,首先需要来自包含一个应用程序的客户的请求。ResourceManager 协商一个容器的必要资源,启动一个 ApplicationMaster 来表示已提交的应用程序。通过使用一个资源请求协议,ApplicationMaster 协商每个节点上供应用程序使用的资源容器。执行应用程序时,ApplicationMaster 监视容器直到完成。当应用程序完成时,ApplicationMaster 从 ResourceManager 注销其容器,执行周期就完成了。
通过这些讨论,应该明确的一点是,旧的 Hadoop 架构受到了 JobTracker 的高度约束,JobTracker 负责整个集群的资源管理和作业调度。新的 YARN 架构打破了这种模型,允许一个新 ResourceManager 管理跨应用程序的资源使用,ApplicationMaster 负责管理作业的执行。这一更改消除了一处瓶颈,还改善了将 Hadoop 集群扩展到比以前大得多的配置的能力。此外,不同于传统的 MapReduce,YARN 允许使用 Message Passing Interface 等标准通信模式,同时执行各种不同的编程模型,包括图形处理、迭代式处理、机器学习和一般集群计算。
发表评论
文章已被作者锁定,不允许评论。
-
Hadoop namenode的fsimage与editlog详解
2017-05-19 10:04 1188Namenode主要维护两个文件,一个是fsimage,一个是 ... -
Hadoop HBase建表时预分区(region)的方法学习
2017-05-15 11:18 1194如果知道Hbase数据表的key的分布情况,就可以在建表的时候 ... -
Hadoop HBase行健(rowkey)设计原则学习
2017-05-15 10:34 1127Hbase是三维有序存储的,通过rowkey(行键),colu ... -
Hadoop HBase中split原理学习
2017-05-12 13:38 2281在Hbase中split是一个很重 ... -
Hadoop HBase中Compaction原理学习
2017-05-12 10:34 999HBase Compaction策略 RegionServer ... -
Hadoop HBase性能优化学习
2017-05-12 09:15 688一、调整参数 入门级的调优可以从调整参数开始。投入小,回报快 ... -
Hadoop 分布式文件系统学习
2017-05-10 15:34 507一. 分布式文件系统 分布式文件系统,在整个分布式系统体系中处 ... -
Hadoop MapReduce处理wordcount代码分析
2017-04-28 14:25 595package org.apache.hadoop.exa ... -
Hadoop YARN完全分布式配置学习
2017-04-26 10:27 578版本及配置简介 Java: J ... -
Hadoop YARN各个组件和流程的学习
2017-04-24 19:04 651一、基本组成结构 * 集 ... -
Hive 注意事项与扩展特性
2017-04-06 19:31 7521. 使用HIVE注意点 字符集 Hadoop和Hive都 ... -
Hive 元数据和QL基本操作学习整理
2017-04-06 14:36 1032Hive元数据库 Hive将元数据存储在RDBMS 中,一般常 ... -
Hive 文件压缩存储格式(STORED AS)
2017-04-06 09:35 2321Hive文件存储格式包括以下几类: 1.TEXTFILE ... -
Hive SQL自带函数总结
2017-04-05 19:25 1143字符串长度函数:length ... -
Hive 连接查询操作(不支持IN查询)
2017-04-05 19:16 729CREATE EXTERNAL TABLE IF NOT ... -
Hive优化学习(join ,group by,in)
2017-04-05 18:48 1818一、join优化 Join ... -
Hive 基础知识学习(语法)
2017-04-05 15:51 904一.Hive 简介 Hive是基于 Hadoop 分布式文件 ... -
Hive 架构与基本语法(OLAP)
2017-04-05 15:16 1254Hive 是什么 Hive是建立在Hadoop上的数据仓库基础 ... -
Hadoop MapReduce操作Hbase范例学习(TableMapReduceUtil)
2017-03-24 15:37 1217Hbase里的数据量一般都 ... -
Hadoop MapReduce将HDFS文本数据导入HBase
2017-03-24 11:13 1222HBase本身提供了很多种数据导入的方式,通常有两种常用方式: ...
相关推荐
### Apache Hadoop YARN:Yet Another Resource Negotiator #### 概述 Apache Hadoop YARN(Yet Another Resource Negotiator)是Hadoop生态系统中的一个关键组件,它为Hadoop提供了资源管理和作业调度的能力。...
YARN,即Yet Another Resource Negotiator,是Hadoop 2.x引入的一个重要组件,它的核心目标是解决Hadoop 1.x版本中的可扩展性问题,将资源管理和作业调度/监控分离开来,极大地提高了系统的灵活性和扩展性。YARN的...
随着Hadoop的发展,YARN(Yet Another Resource Negotiator)应运而生,作为第二代Hadoop的资源管理系统,它为Hadoop引入了更强大的任务调度和资源分配机制,使得系统能够支持多种计算框架,如MapReduce、Spark、Tez...
Hadoop YARN(Yet Another Resource Negotiator)是Apache Hadoop的一个子项目,旨在解决Hadoop第一版中MapReduce的缺陷和限制。YARN的核心是资源管理器(ResourceManager),它管理集群中所有计算资源,并负责调度...
Apache Hadoop YARN,全称为Yet Another Resource Negotiator(另一种资源协调器),是Apache Hadoop生态系统中的核心组件,负责管理和调度Hadoop分布式计算环境中的资源。YARN的引入旨在解决早期Hadoop MapReduce...
Hadoop YARN(Yet Another Resource Negotiator)是Hadoop 2.0引入的一个核心组件,旨在解决早期Hadoop版本中的扩展性问题、资源管理单一性以及对多计算框架支持不足的缺陷。YARN的出现,使得Hadoop不仅限于...
Hadoop YARN(Yet Another Resource Negotiator)是Apache Hadoop项目中的一个核心组件,它负责管理集群资源的分配和调度,使得大数据处理任务得以高效执行。YARN Server ResourceManager在Hadoop生态系统中扮演着至...
在大数据处理领域,Hadoop YARN(Yet Another Resource Negotiator)是Apache Hadoop项目中的一个核心组件,负责管理和调度集群中的资源。YARN为大数据处理提供了高效、可扩展的资源管理框架,使得不同类型的计算...
Hadoop YARN(Yet Another Resource Negotiator)则是Hadoop 2.x引入的资源管理系统,它负责集群资源的分配和调度,取代了MapReduce v1中的任务调度和资源管理功能。YARN将资源管理和计算任务分离,允许不同的计算...
在大数据处理领域,Hadoop YARN(Yet Another Resource Negotiator)是Apache Hadoop项目的核心组件之一,主要负责集群资源的管理和调度。YARN优化对于提升整个Hadoop集群的性能至关重要,尤其是在处理大规模数据...
Hadoop YARN(Yet Another Resource Negotiator)是Apache Hadoop项目中的一个核心组件,它的设计目标是解决早期Hadoop 1.x版本中MapReduce(MRv1)存在的问题,包括扩展性限制、单点故障以及对其他计算框架支持不足...
YARN(Yet Another Resource Negotiator),是Apache Hadoop生态系统中的核心组件之一,负责管理和调度集群资源,使得大数据处理更加高效和灵活。下面将详细阐述YARN的主要概念、工作原理及其在实际应用中的重要性。...
Hadoop 2.6 是一个基于 YARN(Yet Another Resource Negotiator)的分布式计算框架,它提供了高效、可靠的数据处理能力。在本文中,我们将详细介绍 Hadoop 2.6 的安装配置过程,包括 NameNode 的高可用性配置、...
在大数据处理领域,Apache Hadoop YARN(Yet Another Resource Negotiator)作为资源管理和任务调度的核心组件,对于提升集群性能至关重要。本文将根据提供的文件内容,详细介绍如何通过一系列步骤来优化Hadoop YARN...
标题 "hadoop-yarn-common-0.23.9.zip" 暗示了这是一个关于Hadoop YARN(Yet Another Resource Negotiator)组件的开源软件包,具体版本为0.23.9。Hadoop是Apache基金会的一个核心项目,主要用于大数据处理和分布式...
Hadoop YARN(Yet Another Resource Negotiator)是Apache Hadoop的一个子项目,主要用于优化和提升Hadoop大数据处理平台的资源管理和作业调度能力。它将资源管理和作业调度/监控分离开来,使得集群资源可以被多种...
Hadoop 2.0 YARN,全称Yet Another Resource Negotiator,是Apache Hadoop生态系统中的一个核心组件,它在Hadoop 1.0 MapReduce的基础上进行了重大改进,旨在解决资源管理和调度的问题,以提高分布式计算的效率和...