1,Executor
public interface Executor
执行已提交的 Runnable 任务的对象。此接口提供一种将任务提交与每个任务将如何运行的机制(包括线程使用的细节、调度等)分离开来的方法。通常使用 Executor 而不是显式地创建线程。例如,可能会使用以下方法,而不是为一组任务中的每个任务调用 new Thread(new(RunnableTask())).start():
Executor executor = anExecutor;
executor.execute(new RunnableTask1());
executor.execute(new RunnableTask2());
...
不过,Executor 接口并没有严格地要求执行是异步的。在最简单的情况下,执行程序可以在调用者的线程中立即运行已提交的任务:
class DirectExecutor implements Executor {
public void execute(Runnable r) {
r.run();
}
}
更常见的是,任务是在某个不是调用者线程的线程中执行的。以下执行程序将为每个任务生成一个新线程。
class ThreadPerTaskExecutor implements Executor {
public void execute(Runnable r) {
new Thread(r).start();
}
}
许多 Executor 实现都对调度任务的方式和时间强加了某种限制。以下执行程序使任务提交与第二个执行程序保持连续,这说明了一个复合执行程序。
class SerialExecutor implements Executor {
final Queue<Runnable> tasks = new ArrayDeque<Runnable>();
final Executor executor;
Runnable active;
SerialExecutor(Executor executor) {
this.executor = executor;
}
public synchronized void execute(final Runnable r) {
tasks.offer(new Runnable() {
public void run() {
try {
r.run();
} finally {
scheduleNext();
}
}
});
if (active == null) {
scheduleNext();
}
}
protected synchronized void scheduleNext() {
if ((active = tasks.poll()) != null) {
executor.execute(active);
}
}
}
此包中提供的 Executor 实现实现了 ExecutorService,这是一个使用更广泛的接口。ThreadPoolExecutor 类提供一个可扩展的线程池实现。Executors 类为这些 Executor 提供了便捷的工厂方法。
内存一致性效果:线程中将 Runnable 对象提交到 Executor 之前的操作 happen-before 其执行开始(可能在另一个线程中)。
execute
void execute(Runnable command)
在未来某个时间执行给定的命令。该命令可能在新的线程、已入池的线程或者正调用的线程中执行,这由 Executor 实现决定。
参数:
command - 可运行的任务
抛出:
RejectedExecutionException - 如果不能接受执行此任务。
NullPointerException - 如果命令为 null
2,ExecutorService
public interface ExecutorService
extends Executor
Executor 提供了管理终止的方法,以及可为跟踪一个或多个异步任务执行状况而生成 Future 的方法。
可以关闭 ExecutorService,这将导致其拒绝新任务。提供两个方法来关闭 ExecutorService。shutdown() 方法在终止前允许执行以前提交的任务,而 shutdownNow() 方法阻止等待任务启动并试图停止当前正在执行的任务。在终止时,执行程序没有任务在执行,也没有任务在等待执行,并且无法提交新任务。应该关闭未使用的 ExecutorService 以允许回收其资源。
通过创建并返回一个可用于取消执行和/或等待完成的 Future,方法 submit 扩展了基本方法 Executor.execute(java.lang.Runnable)。方法 invokeAny 和 invokeAll 是批量执行的最常用形式,它们执行任务 collection,然后等待至少一个,或全部任务完成(可使用 ExecutorCompletionService 类来编写这些方法的自定义变体)。
Executors 类提供了用于此包中所提供的执行程序服务的工厂方法。
用法示例
下面给出了一个网络服务的简单结构,这里线程池中的线程作为传入的请求。它使用了预先配置的 Executors.newFixedThreadPool(int) 工厂方法:
class NetworkService implements Runnable {
private final ServerSocket serverSocket;
private final ExecutorService pool;
public NetworkService(int port, int poolSize)
throws IOException {
serverSocket = new ServerSocket(port);
pool = Executors.newFixedThreadPool(poolSize);
}
public void run() { // run the service
try {
for (;;) {
pool.execute(new Handler(serverSocket.accept()));
}
} catch (IOException ex) {
pool.shutdown();
}
}
}
class Handler implements Runnable {
private final Socket socket;
Handler(Socket socket) { this.socket = socket; }
public void run() {
// read and service request on socket
}
}
下列方法分两个阶段关闭 ExecutorService。第一阶段调用 shutdown 拒绝传入任务,然后调用 shutdownNow(如有必要)取消所有遗留的任务:
void shutdownAndAwaitTermination(ExecutorService pool) {
pool.shutdown(); // Disable new tasks from being submitted
try {
// Wait a while for existing tasks to terminate
if (!pool.awaitTermination(60, TimeUnit.SECONDS)) {
pool.shutdownNow(); // Cancel currently executing tasks
// Wait a while for tasks to respond to being cancelled
if (!pool.awaitTermination(60, TimeUnit.SECONDS))
System.err.println("Pool did not terminate");
}
} catch (InterruptedException ie) {
// (Re-)Cancel if current thread also interrupted
pool.shutdownNow();
// Preserve interrupt status
Thread.currentThread().interrupt();
}
}
内存一致性效果:线程中向 ExecutorService 提交 Runnable 或 Callable 任务之前的操作 happen-before 由该任务所提取的所有操作,后者依次 happen-before 通过 Future.get() 获取的结果。
3,AbstractExecutorService
public abstract class AbstractExecutorService
extends Object
implements ExecutorService
提供 ExecutorService 执行方法的默认实现。此类使用 newTaskFor 返回的 RunnableFuture 实现 submit、invokeAny 和 invokeAll 方法,默认情况下,RunnableFuture 是此包中提供的 FutureTask 类。例如,submit(Runnable) 的实现创建了一个关联 RunnableFuture 类,该类将被执行并返回。子类可以重写 newTaskFor 方法,以返回 FutureTask 之外的 RunnableFuture 实现。
扩展示例。以下是一个类的简要介绍,该类定制 ThreadPoolExecutor 使用 CustomTask 类替代默认 FutureTask:
public class CustomThreadPoolExecutor extends ThreadPoolExecutor {
static class CustomTask<V> implements RunnableFuture<V> {...}
protected <V> RunnableFuture<V> newTaskFor(Callable<V> c) {
return new CustomTask<V>(c);
}
protected <V> RunnableFuture<V> newTaskFor(Runnable r, V v) {
return new CustomTask<V>(r, v);
}
// ... add constructors, etc.
}
4,ThreadPoolExecutor
public class ThreadPoolExecutor
extends AbstractExecutorService
一个 ExecutorService,它使用可能的几个池线程之一执行每个提交的任务,通常使用 Executors 工厂方法配置。
线程池可以解决两个不同问题:由于减少了每个任务调用的开销,它们通常可以在执行大量异步任务时提供增强的性能,并且还可以提供绑定和管理资源(包括执行任务集时使用的线程)的方法。每个 ThreadPoolExecutor 还维护着一些基本的统计数据,如完成的任务数。
为了便于跨大量上下文使用,此类提供了很多可调整的参数和扩展钩子 (hook)。但是,强烈建议程序员使用较为方便的 Executors 工厂方法 Executors.newCachedThreadPool()(无界线程池,可以进行自动线程回收)、Executors.newFixedThreadPool(int)(固定大小线程池)和 Executors.newSingleThreadExecutor()(单个后台线程),它们均为大多数使用场景预定义了设置。否则,在手动配置和调整此类时,使用以下指导:
核心和最大池大小
ThreadPoolExecutor 将根据 corePoolSize(参见 getCorePoolSize())和 maximumPoolSize(参见 getMaximumPoolSize())设置的边界自动调整池大小。当新任务在方法 execute(java.lang.Runnable) 中提交时,如果运行的线程少于 corePoolSize,则创建新线程来处理请求,即使其他辅助线程是空闲的。如果运行的线程多于 corePoolSize 而少于 maximumPoolSize,则仅当队列满时才创建新线程。如果设置的 corePoolSize 和 maximumPoolSize 相同,则创建了固定大小的线程池。如果将 maximumPoolSize 设置为基本的无界值(如 Integer.MAX_VALUE),则允许池适应任意数量的并发任务。在大多数情况下,核心和最大池大小仅基于构造来设置,不过也可以使用 setCorePoolSize(int) 和 setMaximumPoolSize(int) 进行动态更改。
按需构造
默认情况下,即使核心线程最初只是在新任务到达时才创建和启动的,也可以使用方法 prestartCoreThread() 或 prestartAllCoreThreads() 对其进行动态重写。如果构造带有非空队列的池,则可能希望预先启动线程。
创建新线程
使用 ThreadFactory 创建新线程。如果没有另外说明,则在同一个 ThreadGroup 中一律使用 Executors.defaultThreadFactory() 创建线程,并且这些线程具有相同的 NORM_PRIORITY 优先级和非守护进程状态。通过提供不同的 ThreadFactory,可以改变线程的名称、线程组、优先级、守护进程状态,等等。如果从 newThread 返回 null 时 ThreadFactory 未能创建线程,则执行程序将继续运行,但不能执行任何任务。
保持活动时间
如果池中当前有多于 corePoolSize 的线程,则这些多出的线程在空闲时间超过 keepAliveTime 时将会终止(参见 getKeepAliveTime(java.util.concurrent.TimeUnit))。这提供了当池处于非活动状态时减少资源消耗的方法。如果池后来变得更为活动,则可以创建新的线程。也可以使用方法 setKeepAliveTime(long, java.util.concurrent.TimeUnit) 动态地更改此参数。使用 Long.MAX_VALUE TimeUnit.NANOSECONDS 的值在关闭前有效地从以前的终止状态禁用空闲线程。默认情况下,保持活动策略只在有多于 corePoolSizeThreads 的线程时应用。但是只要 keepAliveTime 值非 0,allowCoreThreadTimeOut(boolean) 方法也可将此超时策略应用于核心线程。
排队
所有 BlockingQueue 都可用于传输和保持提交的任务。可以使用此队列与池大小进行交互:
- 如果运行的线程少于 corePoolSize,则 Executor 始终首选添加新的线程,而不进行排队。
- 如果运行的线程等于或多于 corePoolSize,则 Executor 始终首选将请求加入队列,而不添加新的线程。
- 如果无法将请求加入队列,则创建新的线程,除非创建此线程超出 maximumPoolSize,在这种情况下,任务将被拒绝。
排队有三种通用策略:
- 直接提交。工作队列的默认选项是 SynchronousQueue,它将任务直接提交给线程而不保持它们。在此,如果不存在可用于立即运行任务的线程,则试图把任务加入队列将失败,因此会构造一个新的线程。此策略可以避免在处理可能具有内部依赖性的请求集时出现锁。直接提交通常要求无界 maximumPoolSizes 以避免拒绝新提交的任务。当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。
newCachedThreadPool
- 无界队列。使用无界队列(例如,不具有预定义容量的 LinkedBlockingQueue)将导致在所有 corePoolSize 线程都忙时新任务在队列中等待。这样,创建的线程就不会超过 corePoolSize。(因此,maximumPoolSize 的值也就无效了。)当每个任务完全独立于其他任务,即任务执行互不影响时,适合于使用无界队列;例如,在 Web 页服务器中。这种排队可用于处理瞬态突发请求,当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。
newFixedThreadPool/newSingleThreadExecutor
- 有界队列。当使用有限的 maximumPoolSizes 时,有界队列(如 ArrayBlockingQueue)有助于防止资源耗尽,但是可能较难调整和控制。队列大小和最大池大小可能需要相互折衷:使用大型队列和小型池可以最大限度地降低 CPU 使用率、操作系统资源和上下文切换开销,但是可能导致人工降低吞吐量。如果任务频繁阻塞(例如,如果它们是 I/O 边界),则系统可能为超过您许可的更多线程安排时间。使用小型队列通常要求较大的池大小,CPU 使用率较高,但是可能遇到不可接受的调度开销,这样也会降低吞吐量。
被拒绝的任务
当 Executor 已经关闭,并且 Executor 将有限边界用于最大线程和工作队列容量,且已经饱和时,在方法 execute(java.lang.Runnable) 中提交的新任务将被拒绝。在以上两种情况下,execute 方法都将调用其 RejectedExecutionHandler 的 RejectedExecutionHandler.rejectedExecution(java.lang.Runnable, java.util.concurrent.ThreadPoolExecutor) 方法。下面提供了四种预定义的处理程序策略:
- 在默认的 ThreadPoolExecutor.AbortPolicy 中,处理程序遭到拒绝将抛出运行时 RejectedExecutionException。
- 在 ThreadPoolExecutor.CallerRunsPolicy 中,线程调用运行该任务的 execute 本身。此策略提供简单的反馈控制机制,能够减缓新任务的提交速度。
- 在 ThreadPoolExecutor.DiscardPolicy 中,不能执行的任务将被删除。
- 在 ThreadPoolExecutor.DiscardOldestPolicy 中,如果执行程序尚未关闭,则位于工作队列头部的任务将被删除,然后重试执行程序(如果再次失败,则重复此过程)。
定义和使用其他种类的 RejectedExecutionHandler 类也是可能的,但这样做需要非常小心,尤其是当策略仅用于特定容量或排队策略时。
钩子 (hook) 方法
此类提供 protected 可重写的 beforeExecute(java.lang.Thread, java.lang.Runnable) 和 afterExecute(java.lang.Runnable, java.lang.Throwable) 方法,这两种方法分别在执行每个任务之前和之后调用。它们可用于操纵执行环境;例如,重新初始化 ThreadLocal、搜集统计信息或添加日志条目。此外,还可以重写方法 terminated() 来执行 Executor 完全终止后需要完成的所有特殊处理。
如果钩子 (hook) 或回调方法抛出异常,则内部辅助线程将依次失败并突然终止。
队列维护
方法 getQueue() 允许出于监控和调试目的而访问工作队列。强烈反对出于其他任何目的而使用此方法。remove(java.lang.Runnable) 和 purge() 这两种方法可用于在取消大量已排队任务时帮助进行存储回收。
终止
程序 AND 不再引用的池没有剩余线程会自动 shutdown。如果希望确保回收取消引用的池(即使用户忘记调用 shutdown()),则必须安排未使用的线程最终终止:设置适当保持活动时间,使用 0 核心线程的下边界和/或设置 allowCoreThreadTimeOut(boolean)。
扩展示例。此类的大多数扩展可以重写一个或多个受保护的钩子 (hook) 方法。例如,下面是一个添加了简单的暂停/恢复功能的子类:
class PausableThreadPoolExecutor extends ThreadPoolExecutor {
private boolean isPaused;
private ReentrantLock pauseLock = new ReentrantLock();
private Condition unpaused = pauseLock.newCondition();
public PausableThreadPoolExecutor(...) { super(...); }
protected void beforeExecute(Thread t, Runnable r) {
super.beforeExecute(t, r);
pauseLock.lock();
try {
while (isPaused) unpaused.await();
} catch(InterruptedException ie) {
t.interrupt();
} finally {
pauseLock.unlock();
}
}
public void pause() {
pauseLock.lock();
try {
isPaused = true;
} finally {
pauseLock.unlock();
}
}
public void resume() {
pauseLock.lock();
try {
isPaused = false;
unpaused.signalAll();
} finally {
pauseLock.unlock();
}
}
}
5,ScheduledThreadPoolExecutor
public class ScheduledThreadPoolExecutor
extends ThreadPoolExecutor
implements ScheduledExecutorService
ThreadPoolExecutor,它可另行安排在给定的延迟后运行命令,或者定期执行命令。需要多个辅助线程时,或者要求 ThreadPoolExecutor 具有额外的灵活性或功能时,此类要优于 Timer。
一旦启用已延迟的任务就执行它,但是有关何时启用,启用后何时执行则没有任何实时保证。按照提交的先进先出 (FIFO) 顺序来启用那些被安排在同一执行时间的任务。
虽然此类继承自 ThreadPoolExecutor,但是几个继承的调整方法对此类并无作用。特别是,因为它作为一个使用 corePoolSize 线程和一个无界队列的固定大小的池,所以调整 maximumPoolSize 没有什么效果。
扩展注意事项:此类重写 AbstractExecutorService 的 submit 方法,以生成内部对象控制每个任务的延迟和调度。若要保留功能性,子类中任何进一步重写的这些方法都必须调用超类版本,超类版本有效地禁用附加任务的定制。但是,此类提供替代受保护的扩展方法 decorateTask(为 Runnable 和 Callable 各提供一种版本),可定制用于通过 execute、submit、schedule、scheduleAtFixedRate 和 scheduleWithFixedDelay 进入的执行命令的具体任务类型。默认情况下,ScheduledThreadPoolExecutor 使用一个扩展 FutureTask 的任务类型。但是,可以使用下列形式的子类修改或替换该类型。
public class CustomScheduledExecutor extends ScheduledThreadPoolExecutor {
static class CustomTask<V> implements RunnableScheduledFuture<V> { ... }
protected <V> RunnableScheduledFuture<V> decorateTask(
Runnable r, RunnableScheduledFuture<V> task) {
return new CustomTask<V>(r, task);
}
protected <V> RunnableScheduledFuture<V> decorateTask(
Callable<V> c, RunnableScheduledFuture<V> task) {
return new CustomTask<V>(c, task);
}
// ... add constructors, etc.
}
6,Executors
public class Executors
extends Object
此包中所定义的 Executor、ExecutorService、ScheduledExecutorService、ThreadFactory 和 Callable 类的工厂和实用方法。此类支持以下各种方法:
- 创建并返回设置有常用配置字符串的 ExecutorService 的方法。
- 创建并返回设置有常用配置字符串的 ScheduledExecutorService 的方法。
- 创建并返回“包装的”ExecutorService 方法,它通过使特定于实现的方法不可访问来禁用重新配置。
- 创建并返回 ThreadFactory 的方法,它可将新创建的线程设置为已知的状态。
- 创建并返回非闭包形式的 Callable 的方法,这样可将其用于需要 Callable 的执行方法中。
相关推荐
【Executor、Executors和ExecutorService详解】 在Java并发编程中,`Executor`、`Executors`和`ExecutorService`是核心组件,它们帮助开发者高效管理线程资源,提高程序的并发性能。理解这三个概念的区别和用途是...
Java并发编程中的Executor、Executors和ExecutorService是Java并发编程框架的重要组成部分,它们为开发者提供了高效管理和控制线程执行的工具。以下是对这些概念的详细解释: 1. Executor: Executor是一个接口,它...
Java 中 Executor, ExecutorService 和 Executors 的不同 Java 中的 Executor, ExecutorService 和 Executors 是 Java Executor 框架的重要组件,用于提供线程池的功能。在 Java 1.5 之后,Executor 框架提供了多种...
ExecutorService bossExecutor = Executors.newCachedThreadPool(); ExecutorService workerExecutor = Executors.newCachedThreadPool(); // Start the server server.start(bossExecutor, workerExecutor); ...
顶层接口Executors详解 Executors框架是Java语言中用于异步执行任务的高级接口,旨在提供一个高效、灵活、可扩展的任务执行机制。该框架提供了一个两级调度模型,第一级是用户级的调度器,第二级是操作系统内核的...
ExecutorService executor = Executors.newFixedThreadPool(5); executor.execute(new Runnable() { public void run() { // 任务代码 } }); // 当不再提交任务时,关闭ExecutorService executor.shutdown(); ```...
ExecutorService executor = Executors.newFixedThreadPool(5); // 创建固定大小的线程池 executor.execute(new Runnable() { @Override public void run() { // 多线程代码 } }); executor.shutdown(); // 关闭...
ExecutorService executor = Executors.newCachedThreadPool(); ``` #### 代码示例:创建自定义线程池 ```java int corePoolSize = 5; int maximumPoolSize = 10; long keepAliveTime = 1L; TimeUnit unit = ...
ScheduledExecutorService executor = Executors.newScheduledThreadPool(1); Runnable task = () -> System.out.println("定时任务执行"); executor.scheduleAtFixedRate(task, 0, 5, TimeUnit.SECONDS); // 当...
ScheduledExecutorService executor = Executors.newSingleThreadScheduledExecutor(); executor.scheduleAtFixedRate(() -> { System.out.println("Task executed at " + new Date()); }, 0, 2, TimeUnit....
ExecutorService executor = Executors.newFixedThreadPool(5); for (int i = 0; i ; i++) { executor.execute(new Runnable() { public void run() { // 线程执行的任务 } }); } executor.shutdown(); // ...
Java中的`Executor`接口是并发编程的核心组件,它位于`java.util.concurrent`包下,主要目的是接收客户端提交的任务(以`Runnable`实例的形式)并负责执行。`Executor`接口简化了多线程编程,使得任务的创建和执行...
ThreadPoolExecutor的使用和Android常见的4种线程池使用介绍
主要介绍了Azkaban报错-azkaban.executor.ExecutorManagerException: No active executors found,本文给大家介绍的非常详细,需要的朋友可以参考下
ExecutorService executor = Executors.newFixedThreadPool(5); // 循环提交任务 for (int i = 0; i ; i++) { Runnable task = new Runnable() { @Override public void run() { System.out.println("Task...
本文将详细讲解 Java 面试题,包括线程与进程的区别、多线程中的上下文切换、死锁与活锁的区别、Java 中守护线程和本地线程的区别、为什么使用 Executor 框架、Java 中 Executor 和 Executors 的区别、Java 中用到的...
ExecutorService executor = Executors.newSingleThreadExecutor(); Future<Integer> future = executor.submit(new Callable() { @Override public Integer call() throws Exception { return someCalculation()...
Executors类是一个工厂类,提供了一系列静态方法,用于创建不同类型的ExecutorService实例,满足不同场景的需求: 1. `newSingleThreadExecutor()`: 创建一个单线程的ExecutorService。所有任务都会按顺序串行执行...
ExecutorService executor = Executors.newSingleThreadExecutor(); Future<Integer> future = executor.submit(() -> calculate()); Integer result = future.get(); // 获取结果,会阻塞直到计算完成 executor....
`Executors`是`ExecutorService`的工厂类,提供了一些静态方法来创建不同类型的线程池,如固定大小的线程池、单线程的线程池、缓存线程池等。这些线程池可以根据需求实现更高效、更可控的并发处理。 在实际应用中,...