- 浏览: 599566 次
- 性别:
- 来自: 厦门
文章分类
- 全部博客 (669)
- oracle (36)
- java (98)
- spring (48)
- UML (2)
- hibernate (10)
- tomcat (7)
- 高性能 (11)
- mysql (25)
- sql (19)
- web (42)
- 数据库设计 (4)
- Nio (6)
- Netty (8)
- Excel (3)
- File (4)
- AOP (1)
- Jetty (1)
- Log4J (4)
- 链表 (1)
- Spring Junit4 (3)
- Autowired Resource (0)
- Jackson (1)
- Javascript (58)
- Spring Cache (2)
- Spring - CXF (2)
- Spring Inject (2)
- 汉字拼音 (3)
- 代理模式 (3)
- Spring事务 (4)
- ActiveMQ (6)
- XML (3)
- Cglib (2)
- Activiti (15)
- 附件问题 (1)
- javaMail (1)
- Thread (19)
- 算法 (6)
- 正则表达式 (3)
- 国际化 (2)
- Json (3)
- EJB (3)
- Struts2 (1)
- Maven (7)
- Mybatis (7)
- Redis (8)
- DWR (1)
- Lucene (2)
- Linux (73)
- 杂谈 (2)
- CSS (13)
- Linux服务篇 (3)
- Kettle (9)
- android (81)
- protocol (2)
- EasyUI (6)
- nginx (2)
- zookeeper (6)
- Hadoop (41)
- cache (7)
- shiro (3)
- HBase (12)
- Hive (8)
- Spark (15)
- Scala (16)
- YARN (3)
- Kafka (5)
- Sqoop (2)
- Pig (3)
- Vue (6)
- sprint boot (19)
- dubbo (2)
- mongodb (2)
最新评论
Zookeeper服务自身组成一个集群(2n+1个服务允许n个失效)。Zookeeper服务有两个角色,一个是leader,负责写服务和数据同步,剩下的是follower,提供读服务,leader失效后会在follower中重新选举新的leader。
zk cli操作:https://blog.csdn.net/u010392705/article/details/69664064
Zookeeper逻辑图如下,
1.客户端可以连接到每个server,每个server的数据完全相同。
2.每个follower都和leader有连接,接受leader的数据更新操作。
3.Server记录事务日志和快照到持久存储。
4.大多数server可用,整体服务就可用。
为维护配置信息,命名服务,提供分布式同步机制,提供组服务提供了一套集中式服务。
在分布式系统中,这些服务可能或多或少的被用到。但之前,每次要用到这些服务的时候,自己写一个,总会有这样那样的问题,比如单点问题,竞态条件等,而且写起来麻烦。
zookeeper将这些服务精炼为一个集中协调服务的简单接口。zookeeper是一个分布式的,也是高度可靠的。
它已经提供了一致性,组管理,存活状态协议的实现。所以我们不必自己实现这些。
zookeeper 通过树形的数据节点来支持分布式的进程之间相互协作,这个结构有点像文件系统。但与普通文件系统不同的是,zookeeper提供了高通量,低延迟,高可用性,严格有序的数据服务。zookeeper的命名空间跟Linux的文件系统类似,都是树型的,根目录 “/”。与linux文件系统最大的不同是,zookeeper的每一个节点都有数据。但zookeeper每个节点的数据是有限的。
zookeeper是设计用来存储协作信息的:配置信息,资源定位信息,状态信息的。这种元信息通常只有几字节或几KB。为了防止有人滥用zookeeper来存储大量数据,zookeeper内部有完整性约束:每个节点的数据最多不超过1M。通常情况下数据比这小得多。
zookeeper服务在组成集群的服务器之间是复制的,这些服务器维护一个内存数据树,一个事务日志,一个持久化的数据快照。因为数据是存在内存中的,所以能够提供高通量和低延迟。内存数据库一个缺点是:zookeeper所能维护的数据量大小受限于内存大小。这也是要保持zookeeper中数据量要小的一个原因。
zookeeper服务器之间是互相知晓的,只要大部分服务器可用,那么zookeeper就是可用的。客户端也需要知道zookeeper服务器的列表,以此来创建zookeeper的连接器。
zookeeper客户端只连到单台zookeeper服务器,维护一个TCP连接,通过这个连接来发送请求,接收响应,接收事件。如果连接挂了,客户端会连到另一台服务器。
读请求会被客户端连接的zookeeper服务器直接处理,如果读请求在一个数据节点上注册了一个监听器(watch), 那么这个监听器也是被本地服务器所维护的。写请求在返回之前,会转发到其他所有zookeeper服务器,达到数据一致性。而同步请求也会转发到另一台服务器,但不保证所有服务器数据一致。因此读请求的吞吐量倾向于增加服务器,写请求的吞吐量倾向于减少服务器。
顺序性对zookeeper非常重要,差不多到了强迫症的程度。所有的更新有全序关系。zookeeper用数字给每次更新都打了一个戳,用来标识顺序。我们称这个数字为zxid(zookeeper transaction id)。每次更新有个唯一的zxid。读和监听也通过zxid来排序了。读请求的响应会被服务器打个戳,这个戳就是这个服务器收到的最新的zxid。
数据模型
Zookeeper 会维护一个具有层次关系的数据结构,它非常类似于一个标准的文件系统,如图 1 所示:
Zookeeper 这种数据结构有如下这些特点:
1.每个子目录项如 NameService 都被称作为 znode,这个 znode 是被它所在的路径唯一标识,如 Server1 这个 znode 的标识为 /NameService/Server1
2.znode 可以有子节点目录,并且每个 znode 可以存储数据,注意 EPHEMERAL 类型的目录节点不能有子节点目录
3.znode 是有版本的,每个 znode 中存储的数据可以有多个版本,也就是一个访问路径中可以存储多份数据
4.znode 可以是临时节点,一旦创建这个 znode 的客户端与服务器失去联系,这个 znode 也将自动删除,Zookeeper 的客户端和服务器通信采用长连接方式,每个客户端和服务器通过心跳来保持连接,这个连接状态称为 session,如果 znode 是临时节点,这个 session 失效,znode 也就删除了
5.znode 的目录名可以自动编号,如 App1 已经存在,再创建的话,将会自动命名为 App2
6.znode 可以被监控,包括这个目录节点中存储的数据的修改,子节点目录的变化等,一旦变化可以通知设置监控的客户端,这个是 Zookeeper 的核心特性,Zookeeper 的很多功能都是基于这个特性实现的,后面在典型的应用场景中会有实例介绍
如何使用
Zookeeper 作为一个分布式的服务框架,主要用来解决分布式集群中应用系统的一致性问题,它能提供基于类似于文件系统的目录节点树方式的数据存储,但是 Zookeeper 并不是用来专门存储数据的,它的作用主要是用来维护和监控你存储的数据的状态变化。通过监控这些数据状态的变化,从而可以达到基于数据的集群管理,后面将会详细介绍 Zookeeper 能够解决的一些典型问题,这里先介绍一下,Zookeeper 的操作接口和简单使用示例。
常用接口列表
客户端要连接 Zookeeper 服务器可以通过创建 org.apache.zookeeper. ZooKeeper 的一个实例对象,然后调用这个类提供的接口来和服务器交互。
前面说了 ZooKeeper 主要是用来维护和监控一个目录节点树中存储的数据的状态,所有我们能够操作 ZooKeeper 的也和操作目录节点树大体一样,如创建一个目录节点,给某个目录节点设置数据,获取某个目录节点的所有子目录节点,给某个目录节点设置权限和监控这个目录节点的状态变化。
基本操作
下面给出基本的操作 ZooKeeper 的示例代码,这样你就能对 ZooKeeper 有直观的认识了。下面的清单包括了创建与 ZooKeeper 服务器的连接以及最基本的数据操作:
输出的结果如下:
当对目录节点监控状态打开时,一旦目录节点的状态发生变化,Watcher 对象的 process 方法就会被调用。
ZooKeeper 典型的应用场景
Zookeeper 从设计模式角度来看,是一个基于观察者模式设计的分布式服务管理框架,它负责存储和管理大家都关心的数据,然后接受观察者的注册,一旦这些数据的状态发生变化,Zookeeper 就将负责通知已经在 Zookeeper 上注册的那些观察者做出相应的反应,从而实现集群中类似 Master/Slave 管理模式,关于 Zookeeper 的详细架构等内部细节可以阅读 Zookeeper 的源码
下面详细介绍这些典型的应用场景,也就是 Zookeeper 到底能帮我们解决那些问题?下面将给出答案。
统一命名服务(Name Service)
分布式应用中,通常需要有一套完整的命名规则,既能够产生唯一的名称又便于人识别和记住,通常情况下用树形的名称结构是一个理想的选择,树形的名称结构是一个有层次的目录结构,既对人友好又不会重复。说到这里你可能想到了 JNDI,没错 Zookeeper 的 Name Service 与 JNDI 能够完成的功能是差不多的,它们都是将有层次的目录结构关联到一定资源上,但是 Zookeeper 的 Name Service 更加是广泛意义上的关联,也许你并不需要将名称关联到特定资源上,你可能只需要一个不会重复名称,就像数据库中产生一个唯一的数字主键一样。
Name Service 已经是 Zookeeper 内置的功能,你只要调用 Zookeeper 的 API 就能实现。如调用 create 接口就可以很容易创建一个目录节点。
配置管理(Configuration Management)
配置的管理在分布式应用环境中很常见,例如同一个应用系统需要多台 PC Server 运行,但是它们运行的应用系统的某些配置项是相同的,如果要修改这些相同的配置项,那么就必须同时修改每台运行这个应用系统的 PC Server,这样非常麻烦而且容易出错。
像这样的配置信息完全可以交给 Zookeeper 来管理,将配置信息保存在 Zookeeper 的某个目录节点中,然后将所有需要修改的应用机器监控配置信息的状态,一旦配置信息发生变化,每台应用机器就会收到 Zookeeper 的通知,然后从 Zookeeper 获取新的配置信息应用到系统中。
配置管理结构图
集群管理(Group Membership)
Zookeeper 能够很容易的实现集群管理的功能,如有多台 Server 组成一个服务集群,那么必须要一个“总管”知道当前集群中每台机器的服务状态,一旦有机器不能提供服务,集群中其它集群必须知道,从而做出调整重新分配服务策略。同样当增加集群的服务能力时,就会增加一台或多台 Server,同样也必须让“总管”知道。
Zookeeper 不仅能够帮你维护当前的集群中机器的服务状态,而且能够帮你选出一个“总管”,让这个总管来管理集群,这就是 Zookeeper 的另一个功能 Leader Election。
它们的实现方式都是在 Zookeeper 上创建一个 EPHEMERAL 类型的目录节点,然后每个 Server 在它们创建目录节点的父目录节点上调用getChildren(String path, boolean watch) 方法并设置 watch 为 true,由于是 EPHEMERAL 目录节点,当创建它的 Server 死去,这个目录节点也随之被删除,所以 Children 将会变化,这时 getChildren上的 Watch 将会被调用,所以其它 Server 就知道已经有某台 Server 死去了。新增 Server 也是同样的原理。
Zookeeper 如何实现 Leader Election,也就是选出一个 Master Server。和前面的一样每台 Server 创建一个 EPHEMERAL 目录节点,不同的是它还是一个 SEQUENTIAL 目录节点,所以它是个 EPHEMERAL_SEQUENTIAL 目录节点。之所以它是 EPHEMERAL_SEQUENTIAL 目录节点,是因为我们可以给每台 Server 编号,我们可以选择当前是最小编号的 Server 为 Master,假如这个最小编号的 Server 死去,由于是 EPHEMERAL 节点,死去的 Server 对应的节点也被删除,所以当前的节点列表中又出现一个最小编号的节点,我们就选择这个节点为当前 Master。这样就实现了动态选择 Master,避免了传统意义上单 Master 容易出现单点故障的问题。
这部分的示例代码如下,完整的代码请看附件:
Leader Election 关键代码
共享锁(Locks)
共享锁在同一个进程中很容易实现,但是在跨进程或者在不同 Server 之间就不好实现了。Zookeeper 却很容易实现这个功能,实现方式也是需要获得锁的 Server 创建一个 EPHEMERAL_SEQUENTIAL 目录节点,然后调用 getChildren方法获取当前的目录节点列表中最小的目录节点是不是就是自己创建的目录节点,如果正是自己创建的,那么它就获得了这个锁,如果不是那么它就调用 exists(String path, boolean watch) 方法并监控 Zookeeper 上目录节点列表的变化,一直到自己创建的节点是列表中最小编号的目录节点,从而获得锁,释放锁很简单,只要删除前面它自己所创建的目录节点就行了。
Zookeeper 实现 Locks 的流程图
同步锁的实现代码如下,完整的代码请看附件:
队列管理
Zookeeper 可以处理两种类型的队列:
1.当一个队列的成员都聚齐时,这个队列才可用,否则一直等待所有成员到达,这种是同步队列。
2.队列按照 FIFO 方式进行入队和出队操作,例如实现生产者和消费者模型。
同步队列用 Zookeeper 实现的实现思路如下:
创建一个父目录 /synchronizing,每个成员都监控标志(Set Watch)位目录 /synchronizing/start 是否存在,然后每个成员都加入这个队列,加入队列的方式就是创建 /synchronizing/member_i 的临时目录节点,然后每个成员获取 / synchronizing 目录的所有目录节点,也就是 member_i。判断 i 的值是否已经是成员的个数,如果小于成员个数等待 /synchronizing/start 的出现,如果已经相等就创建 /synchronizing/start。
用下面的流程图更容易理解:
总结
Zookeeper 作为 Hadoop 项目中的一个子项目,是 Hadoop 集群管理的一个必不可少的模块,它主要用来控制集群中的数据,如它管理 Hadoop 集群中的 NameNode,还有 Hbase 中 Master Election、Server 之间状态同步等。
本文介绍的 Zookeeper 的基本知识,以及介绍了几个典型的应用场景。这些都是 Zookeeper 的基本功能,最重要的是 Zoopkeeper 提供了一套很好的分布式集群管理的机制,就是它这种基于层次型的目录树的数据结构,并对树中的节点进行有效管理,从而可以设计出多种多样的分布式的数据管理模型,而不仅仅局限于上面提到的几个常用应用场景。
zk cli操作:https://blog.csdn.net/u010392705/article/details/69664064
Zookeeper逻辑图如下,
1.客户端可以连接到每个server,每个server的数据完全相同。
2.每个follower都和leader有连接,接受leader的数据更新操作。
3.Server记录事务日志和快照到持久存储。
4.大多数server可用,整体服务就可用。
为维护配置信息,命名服务,提供分布式同步机制,提供组服务提供了一套集中式服务。
在分布式系统中,这些服务可能或多或少的被用到。但之前,每次要用到这些服务的时候,自己写一个,总会有这样那样的问题,比如单点问题,竞态条件等,而且写起来麻烦。
zookeeper将这些服务精炼为一个集中协调服务的简单接口。zookeeper是一个分布式的,也是高度可靠的。
它已经提供了一致性,组管理,存活状态协议的实现。所以我们不必自己实现这些。
zookeeper 通过树形的数据节点来支持分布式的进程之间相互协作,这个结构有点像文件系统。但与普通文件系统不同的是,zookeeper提供了高通量,低延迟,高可用性,严格有序的数据服务。zookeeper的命名空间跟Linux的文件系统类似,都是树型的,根目录 “/”。与linux文件系统最大的不同是,zookeeper的每一个节点都有数据。但zookeeper每个节点的数据是有限的。
zookeeper是设计用来存储协作信息的:配置信息,资源定位信息,状态信息的。这种元信息通常只有几字节或几KB。为了防止有人滥用zookeeper来存储大量数据,zookeeper内部有完整性约束:每个节点的数据最多不超过1M。通常情况下数据比这小得多。
zookeeper服务在组成集群的服务器之间是复制的,这些服务器维护一个内存数据树,一个事务日志,一个持久化的数据快照。因为数据是存在内存中的,所以能够提供高通量和低延迟。内存数据库一个缺点是:zookeeper所能维护的数据量大小受限于内存大小。这也是要保持zookeeper中数据量要小的一个原因。
zookeeper服务器之间是互相知晓的,只要大部分服务器可用,那么zookeeper就是可用的。客户端也需要知道zookeeper服务器的列表,以此来创建zookeeper的连接器。
zookeeper客户端只连到单台zookeeper服务器,维护一个TCP连接,通过这个连接来发送请求,接收响应,接收事件。如果连接挂了,客户端会连到另一台服务器。
读请求会被客户端连接的zookeeper服务器直接处理,如果读请求在一个数据节点上注册了一个监听器(watch), 那么这个监听器也是被本地服务器所维护的。写请求在返回之前,会转发到其他所有zookeeper服务器,达到数据一致性。而同步请求也会转发到另一台服务器,但不保证所有服务器数据一致。因此读请求的吞吐量倾向于增加服务器,写请求的吞吐量倾向于减少服务器。
顺序性对zookeeper非常重要,差不多到了强迫症的程度。所有的更新有全序关系。zookeeper用数字给每次更新都打了一个戳,用来标识顺序。我们称这个数字为zxid(zookeeper transaction id)。每次更新有个唯一的zxid。读和监听也通过zxid来排序了。读请求的响应会被服务器打个戳,这个戳就是这个服务器收到的最新的zxid。
数据模型
Zookeeper 会维护一个具有层次关系的数据结构,它非常类似于一个标准的文件系统,如图 1 所示:
Zookeeper 这种数据结构有如下这些特点:
1.每个子目录项如 NameService 都被称作为 znode,这个 znode 是被它所在的路径唯一标识,如 Server1 这个 znode 的标识为 /NameService/Server1
2.znode 可以有子节点目录,并且每个 znode 可以存储数据,注意 EPHEMERAL 类型的目录节点不能有子节点目录
3.znode 是有版本的,每个 znode 中存储的数据可以有多个版本,也就是一个访问路径中可以存储多份数据
4.znode 可以是临时节点,一旦创建这个 znode 的客户端与服务器失去联系,这个 znode 也将自动删除,Zookeeper 的客户端和服务器通信采用长连接方式,每个客户端和服务器通过心跳来保持连接,这个连接状态称为 session,如果 znode 是临时节点,这个 session 失效,znode 也就删除了
5.znode 的目录名可以自动编号,如 App1 已经存在,再创建的话,将会自动命名为 App2
6.znode 可以被监控,包括这个目录节点中存储的数据的修改,子节点目录的变化等,一旦变化可以通知设置监控的客户端,这个是 Zookeeper 的核心特性,Zookeeper 的很多功能都是基于这个特性实现的,后面在典型的应用场景中会有实例介绍
如何使用
Zookeeper 作为一个分布式的服务框架,主要用来解决分布式集群中应用系统的一致性问题,它能提供基于类似于文件系统的目录节点树方式的数据存储,但是 Zookeeper 并不是用来专门存储数据的,它的作用主要是用来维护和监控你存储的数据的状态变化。通过监控这些数据状态的变化,从而可以达到基于数据的集群管理,后面将会详细介绍 Zookeeper 能够解决的一些典型问题,这里先介绍一下,Zookeeper 的操作接口和简单使用示例。
常用接口列表
客户端要连接 Zookeeper 服务器可以通过创建 org.apache.zookeeper. ZooKeeper 的一个实例对象,然后调用这个类提供的接口来和服务器交互。
前面说了 ZooKeeper 主要是用来维护和监控一个目录节点树中存储的数据的状态,所有我们能够操作 ZooKeeper 的也和操作目录节点树大体一样,如创建一个目录节点,给某个目录节点设置数据,获取某个目录节点的所有子目录节点,给某个目录节点设置权限和监控这个目录节点的状态变化。
基本操作
下面给出基本的操作 ZooKeeper 的示例代码,这样你就能对 ZooKeeper 有直观的认识了。下面的清单包括了创建与 ZooKeeper 服务器的连接以及最基本的数据操作:
// 创建一个与服务器的连接 ZooKeeper zk = new ZooKeeper("localhost:" + CLIENT_PORT, ClientBase.CONNECTION_TIMEOUT, new Watcher() { // 监控所有被触发的事件 public void process(WatchedEvent event) { System.out.println("已经触发了" + event.getType() + "事件!"); } }); // 创建一个目录节点 zk.create("/testRootPath", "testRootData".getBytes(), Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT); // 创建一个子目录节点 zk.create("/testRootPath/testChildPathOne", "testChildDataOne".getBytes(), Ids.OPEN_ACL_UNSAFE,CreateMode.PERSISTENT); System.out.println(new String(zk.getData("/testRootPath",false,null))); // 取出子目录节点列表 System.out.println(zk.getChildren("/testRootPath",true)); // 修改子目录节点数据 zk.setData("/testRootPath/testChildPathOne","modifyChildDataOne".getBytes(),-1); System.out.println("目录节点状态:["+zk.exists("/testRootPath",true)+"]"); // 创建另外一个子目录节点 zk.create("/testRootPath/testChildPathTwo", "testChildDataTwo".getBytes(), Ids.OPEN_ACL_UNSAFE,CreateMode.PERSISTENT); System.out.println(new String(zk.getData("/testRootPath/testChildPathTwo",true,null))); // 删除子目录节点 zk.delete("/testRootPath/testChildPathTwo",-1); zk.delete("/testRootPath/testChildPathOne",-1); // 删除父目录节点 zk.delete("/testRootPath",-1); // 关闭连接 zk.close();
输出的结果如下:
已经触发了 None 事件! testRootData [testChildPathOne] 目录节点状态:[5,5,1281804532336,1281804532336,0,1,0,0,12,1,6] 已经触发了 NodeChildrenChanged 事件! testChildDataTwo 已经触发了 NodeDeleted 事件! 已经触发了 NodeDeleted 事件!
当对目录节点监控状态打开时,一旦目录节点的状态发生变化,Watcher 对象的 process 方法就会被调用。
ZooKeeper 典型的应用场景
Zookeeper 从设计模式角度来看,是一个基于观察者模式设计的分布式服务管理框架,它负责存储和管理大家都关心的数据,然后接受观察者的注册,一旦这些数据的状态发生变化,Zookeeper 就将负责通知已经在 Zookeeper 上注册的那些观察者做出相应的反应,从而实现集群中类似 Master/Slave 管理模式,关于 Zookeeper 的详细架构等内部细节可以阅读 Zookeeper 的源码
下面详细介绍这些典型的应用场景,也就是 Zookeeper 到底能帮我们解决那些问题?下面将给出答案。
统一命名服务(Name Service)
分布式应用中,通常需要有一套完整的命名规则,既能够产生唯一的名称又便于人识别和记住,通常情况下用树形的名称结构是一个理想的选择,树形的名称结构是一个有层次的目录结构,既对人友好又不会重复。说到这里你可能想到了 JNDI,没错 Zookeeper 的 Name Service 与 JNDI 能够完成的功能是差不多的,它们都是将有层次的目录结构关联到一定资源上,但是 Zookeeper 的 Name Service 更加是广泛意义上的关联,也许你并不需要将名称关联到特定资源上,你可能只需要一个不会重复名称,就像数据库中产生一个唯一的数字主键一样。
Name Service 已经是 Zookeeper 内置的功能,你只要调用 Zookeeper 的 API 就能实现。如调用 create 接口就可以很容易创建一个目录节点。
配置管理(Configuration Management)
配置的管理在分布式应用环境中很常见,例如同一个应用系统需要多台 PC Server 运行,但是它们运行的应用系统的某些配置项是相同的,如果要修改这些相同的配置项,那么就必须同时修改每台运行这个应用系统的 PC Server,这样非常麻烦而且容易出错。
像这样的配置信息完全可以交给 Zookeeper 来管理,将配置信息保存在 Zookeeper 的某个目录节点中,然后将所有需要修改的应用机器监控配置信息的状态,一旦配置信息发生变化,每台应用机器就会收到 Zookeeper 的通知,然后从 Zookeeper 获取新的配置信息应用到系统中。
配置管理结构图
集群管理(Group Membership)
Zookeeper 能够很容易的实现集群管理的功能,如有多台 Server 组成一个服务集群,那么必须要一个“总管”知道当前集群中每台机器的服务状态,一旦有机器不能提供服务,集群中其它集群必须知道,从而做出调整重新分配服务策略。同样当增加集群的服务能力时,就会增加一台或多台 Server,同样也必须让“总管”知道。
Zookeeper 不仅能够帮你维护当前的集群中机器的服务状态,而且能够帮你选出一个“总管”,让这个总管来管理集群,这就是 Zookeeper 的另一个功能 Leader Election。
它们的实现方式都是在 Zookeeper 上创建一个 EPHEMERAL 类型的目录节点,然后每个 Server 在它们创建目录节点的父目录节点上调用getChildren(String path, boolean watch) 方法并设置 watch 为 true,由于是 EPHEMERAL 目录节点,当创建它的 Server 死去,这个目录节点也随之被删除,所以 Children 将会变化,这时 getChildren上的 Watch 将会被调用,所以其它 Server 就知道已经有某台 Server 死去了。新增 Server 也是同样的原理。
Zookeeper 如何实现 Leader Election,也就是选出一个 Master Server。和前面的一样每台 Server 创建一个 EPHEMERAL 目录节点,不同的是它还是一个 SEQUENTIAL 目录节点,所以它是个 EPHEMERAL_SEQUENTIAL 目录节点。之所以它是 EPHEMERAL_SEQUENTIAL 目录节点,是因为我们可以给每台 Server 编号,我们可以选择当前是最小编号的 Server 为 Master,假如这个最小编号的 Server 死去,由于是 EPHEMERAL 节点,死去的 Server 对应的节点也被删除,所以当前的节点列表中又出现一个最小编号的节点,我们就选择这个节点为当前 Master。这样就实现了动态选择 Master,避免了传统意义上单 Master 容易出现单点故障的问题。
这部分的示例代码如下,完整的代码请看附件:
Leader Election 关键代码
void findLeader() throws InterruptedException { byte[] leader = null; try { leader = zk.getData(root + "/leader", true, null); } catch (Exception e) { logger.error(e); } if (leader != null) { following(); } else { String newLeader = null; try { byte[] localhost = InetAddress.getLocalHost().getAddress(); newLeader = zk.create(root + "/leader", localhost, ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL); } catch (Exception e) { logger.error(e); } if (newLeader != null) { leading(); } else { mutex.wait(); } } }
共享锁(Locks)
共享锁在同一个进程中很容易实现,但是在跨进程或者在不同 Server 之间就不好实现了。Zookeeper 却很容易实现这个功能,实现方式也是需要获得锁的 Server 创建一个 EPHEMERAL_SEQUENTIAL 目录节点,然后调用 getChildren方法获取当前的目录节点列表中最小的目录节点是不是就是自己创建的目录节点,如果正是自己创建的,那么它就获得了这个锁,如果不是那么它就调用 exists(String path, boolean watch) 方法并监控 Zookeeper 上目录节点列表的变化,一直到自己创建的节点是列表中最小编号的目录节点,从而获得锁,释放锁很简单,只要删除前面它自己所创建的目录节点就行了。
Zookeeper 实现 Locks 的流程图
同步锁的实现代码如下,完整的代码请看附件:
void getLock() throws KeeperException, InterruptedException{ List<String> list = zk.getChildren(root, false); String[] nodes = list.toArray(new String[list.size()]); Arrays.sort(nodes); if(myZnode.equals(root+"/"+nodes[0])){ doAction(); } else{ waitForLock(nodes[0]); } } void waitForLock(String lower) throws InterruptedException, KeeperException { Stat stat = zk.exists(root + "/" + lower,true); if(stat != null){ mutex.wait(); } else{ getLock(); } }
队列管理
Zookeeper 可以处理两种类型的队列:
1.当一个队列的成员都聚齐时,这个队列才可用,否则一直等待所有成员到达,这种是同步队列。
2.队列按照 FIFO 方式进行入队和出队操作,例如实现生产者和消费者模型。
同步队列用 Zookeeper 实现的实现思路如下:
创建一个父目录 /synchronizing,每个成员都监控标志(Set Watch)位目录 /synchronizing/start 是否存在,然后每个成员都加入这个队列,加入队列的方式就是创建 /synchronizing/member_i 的临时目录节点,然后每个成员获取 / synchronizing 目录的所有目录节点,也就是 member_i。判断 i 的值是否已经是成员的个数,如果小于成员个数等待 /synchronizing/start 的出现,如果已经相等就创建 /synchronizing/start。
用下面的流程图更容易理解:
总结
Zookeeper 作为 Hadoop 项目中的一个子项目,是 Hadoop 集群管理的一个必不可少的模块,它主要用来控制集群中的数据,如它管理 Hadoop 集群中的 NameNode,还有 Hbase 中 Master Election、Server 之间状态同步等。
本文介绍的 Zookeeper 的基本知识,以及介绍了几个典型的应用场景。这些都是 Zookeeper 的基本功能,最重要的是 Zoopkeeper 提供了一套很好的分布式集群管理的机制,就是它这种基于层次型的目录树的数据结构,并对树中的节点进行有效管理,从而可以设计出多种多样的分布式的数据管理模型,而不仅仅局限于上面提到的几个常用应用场景。
发表评论
文章已被作者锁定,不允许评论。
-
zookeeper 学习总结
2018-01-08 14:11 454cap :一致性 可用性 分 ... -
java Curator实现分布式锁
2017-09-05 14:39 1090Curator实现分布式锁主要依赖于zookeeper ... -
Zookeeper安装学习(zoo.cfg配置详解)
2017-03-27 10:44 4921.1安装前准备 1.Java6 环 ... -
Zookeeper基础知识学习
2017-03-27 10:26 464简介 ZooKeeper是Hadoop的正式子项目,它是一个 ... -
zookeeper原理学习
2017-03-02 18:00 580ZooKeeper是一个分布式的 ...
相关推荐
### Zookeeper 学习笔记 #### 一、Zookeeper 简介与安装配置 **Zookeeper** 是一个分布式协调服务框架,它提供了一种高效可靠的机制来维护集群中的配置信息、命名服务以及提供分布式锁等功能,使得开发人员能够...
ZooKeeper 学习笔记 ZooKeeper 是一个开源的分布式协调服务,由 Hadoop 的创始人 Doug Cutting 等人开发。它为分布式应用提供了一个高效、可靠的协调机制,帮助开发者快速构建高可用、可扩展的分布式系统。 ...
该项目为基于Java语言的Zookeeper学习笔记设计源码,总计包含20个文件,具体构成包括15个Java源文件、3个PNG图片文件以及1个Markdown文件。此外,项目还包含1个XML配置文件,适用于学习和实践Zookeeper相关知识。
Zookeeper是一种重要的分布式协调服务,尤其在处理高可用性、高性能的应用场景中。它最初设计的核心功能是提供分布式锁服务,但随着社区的发展,Zookeeper的功能得到了扩展,现在还用于配置维护、组服务、分布式消息...
### ZooKeeper概述 ZooKeeper,如同其名字所暗示的那样,扮演着“动物园管理员”的角色,主要负责管理和协调各种分布式应用程序(如Hadoop、Hive、Pig等)。它是一个开源的分布式协调服务框架,旨在帮助开发者解决...
本文适合但不限于软件开发人员阅读。本文档能够使阅读者对zookeeper有一个宏观且全面的了解,内容主要包含zookeeper架构、数据模型、读写及工作原理、典型应用场景、指令汇总等,
总的来说,尚硅谷2021年的ZooKeeper笔记提供了一套全面的学习资源,帮助开发者深入了解ZooKeeper的工作原理及其在分布式系统中的关键作用。通过深入学习和实践,可以提升在分布式协调领域的技术水平。
“zookeeper学习笔记.vsdx”可能是一个Visio图表,用于可视化Zookeeper的数据结构、工作流程或架构;而“zookeeper-trunk”可能是一个源码仓库,包含Zookeeper的源代码,适合深入理解其内部机制和进行二次开发。 ...
Zookeeper是Apache Hadoop项目下的一个子项目,它是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现。...通过深入学习和实践,可以更好地应对分布式环境中的各种挑战。
【Zookeeper概述】 Apache ZooKeeper 是一款开源的分布式协调服务,设计用于管理和简化分布式环境中的数据协调任务。它提供了一种简单、高可用且容错的机制,使得开发者可以专注于核心业务逻辑,而不是复杂的分布式...
### Zookeeper概述 Zookeeper是一种分布式协调服务框架,它的核心任务是为用户的分布式应用程序提供一系列的协调...无论是从其提供的服务还是从其内部的机制来看,Zookeeper都是值得深入学习和掌握的重要技术之一。
本篇笔记主要围绕这两个技术进行深入探讨,结合尚硅谷的视频教程资源,旨在帮助读者全面理解并掌握这两者的核心知识。 一、Zookeeper:分布式协调服务 Zookeeper是由Apache开发的一款开源分布式协调服务,它提供了...
【Zookeeper概述】 Zookeeper是Apache Hadoop的一个子项目,主要设计用于解决分布式环境中的数据管理问题,如统一命名服务、状态同步、集群管理和配置管理等。作为一个分布式服务框架,Zookeeper采用Java编写,同时...
《Zookeeper一站式学习资料》是一份全面覆盖Zookeeper基础到高级知识的学习资源包,旨在帮助初学者快速入门并深入理解Zookeeper。这份资料包含了丰富的文本资料、视频教程以及相关的实践代码,是学习分布式协调服务...
而“尚硅谷大数据技术之Zookeeper.xmind”思维导图,则是将整个Zookeeper的知识体系以图形化的形式展现出来,帮助学习者梳理知识点,形成全面的认知框架。 总的来说,这个教程提供了从理论到实践的全面学习材料,...
Zookeeper作为分布式协调服务,其设计初衷就是为了帮助分布式系统维护数据的一致性。Zookeeper的实现基于一种被称为Paxos的算法,Paxos算法是解决分布式系统中一致性问题的一种经典算法。 Paxos算法的核心思想是...
【描述】"dubbo+zookeeper入门资源,可直接使用,适合新手练习使用"意味着这个压缩包包含了学习和实践这两个技术的基础材料。通过这个资源,初学者可以了解如何配置和使用Dubbo与Zookeeper来实现服务间的通信和管理...