`

RocketMQ与Kafka对比(18项差异)

    博客分类:
  • SOA
 
阅读更多

转自:https://github.com/alibaba/RocketMQ/wiki/rmq_vs_kafka

淘宝内部的交易系统使用了淘宝自主研发的Notify消息中间件,使用MySQL作为消息存储媒介,可完全水平扩容,为了进一步降低成本,我们认为存储部分可以进一步优化,2011年初,Linkin开源了Kafka这个优秀的消息中间件,淘宝中间件团队在对Kafka做过充分Review之后,Kafka无限消息堆积,高效的持久化速度吸引了我们,但是同时发现这个消息系统主要定位于日志传输,对于使用在淘宝交易、订单、充值等场景下还有诸多特性不满足,为此我们重新用Java语言编写了RocketMQ,定位于非日志的可靠消息传输(日志场景也OK),目前RocketMQ在阿里集团被广泛应用在订单,交易,充值,流计算,消息推送,日志流式处理,binglog分发等场景。

为了方便大家选型,整理一份RocketMQ与Kafka的对比文档,文中如有错误之处,欢迎来函指正。vintage.wang@gmail.com

数据可靠性

  • RocketMQ支持异步实时刷盘,同步刷盘,同步Replication,异步Replication
  • Kafka使用异步刷盘方式,异步Replication

总结:RocketMQ的同步刷盘在单机可靠性上比Kafka更高,不会因为操作系统Crash,导致数据丢失。 同时同步Replication也比Kafka异步Replication更可靠,数据完全无单点。另外Kafka的Replication以topic为单位,支持主机宕机,备机自动切换,但是这里有个问题,由于是异步Replication,那么切换后会有数据丢失,同时Leader如果重启后,会与已经存在的Leader产生数据冲突。开源版本的RocketMQ不支持Master宕机,Slave自动切换为Master,阿里云版本的RocketMQ支持自动切换特性。

性能对比

总结:Kafka的TPS跑到单机百万,主要是由于Producer端将多个小消息合并,批量发向Broker。

RocketMQ为什么没有这么做?

  1. Producer通常使用Java语言,缓存过多消息,GC是个很严重的问题
  2. Producer调用发送消息接口,消息未发送到Broker,向业务返回成功,此时Producer宕机,会导致消息丢失,业务出错
  3. Producer通常为分布式系统,且每台机器都是多线程发送,我们认为线上的系统单个Producer每秒产生的数据量有限,不可能上万。
  4. 缓存的功能完全可以由上层业务完成。

单机支持的队列数

  • Kafka单机超过64个队列/分区,Load会发生明显的飙高现象,队列越多,load越高,发送消息响应时间变长
  • RocketMQ单机支持最高5万个队列,Load不会发生明显变化

队列多有什么好处?

  1. 单机可以创建更多Topic,因为每个Topic都是由一批队列组成
  2. Consumer的集群规模和队列数成正比,队列越多,Consumer集群可以越大

消息投递实时性

  • Kafka使用短轮询方式,实时性取决于轮询间隔时间
  • RocketMQ使用长轮询,同Push方式实时性一致,消息的投递延时通常在几个毫秒。

消费失败重试

  • Kafka消费失败不支持重试
  • RocketMQ消费失败支持定时重试,每次重试间隔时间顺延

总结:例如充值类应用,当前时刻调用运营商网关,充值失败,可能是对方压力过多,稍后在调用就会成功,如支付宝到银行扣款也是类似需求。

这里的重试需要可靠的重试,即失败重试的消息不因为Consumer宕机导致丢失。

严格的消息顺序

  • Kafka支持消息顺序,但是一台Broker宕机后,就会产生消息乱序
  • RocketMQ支持严格的消息顺序,在顺序消息场景下,一台Broker宕机后,发送消息会失败,但是不会乱序

Mysql Binlog分发需要严格的消息顺序

定时消息

  • Kafka不支持定时消息
  • RocketMQ支持两类定时消息
    • 开源版本RocketMQ仅支持定时Level
    • 阿里云ONS支持定时Level,以及指定的毫秒级别的延时时间

分布式事务消息

  • Kafka不支持分布式事务消息
  • 阿里云ONS支持分布式定时消息,未来开源版本的RocketMQ也有计划支持分布式事务消息

消息查询

  • Kafka不支持消息查询
  • RocketMQ支持根据Message Id查询消息,也支持根据消息内容查询消息(发送消息时指定一个Message Key,任意字符串,例如指定为订单Id)

总结:消息查询对于定位消息丢失问题非常有帮助,例如某个订单处理失败,是消息没收到还是收到处理出错了。

消息回溯

  • Kafka理论上可以按照Offset来回溯消息
  • RocketMQ支持按照时间来回溯消息,精度毫秒,例如从一天之前的某时某分某秒开始重新消费消息

总结:典型业务场景如consumer做订单分析,但是由于程序逻辑或者依赖的系统发生故障等原因,导致今天消费的消息全部无效,需要重新从昨天零点开始消费,那么以时间为起点的消息重放功能对于业务非常有帮助。

消费并行度

  • Kafka的消费并行度依赖Topic配置的分区数,如分区数为10,那么最多10台机器来并行消费(每台机器只能开启一个线程),或者一台机器消费(10个线程并行消费)。即消费并行度和分区数一致。

  • RocketMQ消费并行度分两种情况

    • 顺序消费方式并行度同Kafka完全一致
    • 乱序方式并行度取决于Consumer的线程数,如Topic配置10个队列,10台机器消费,每台机器100个线程,那么并行度为1000。

消息轨迹

  • Kafka不支持消息轨迹
  • 阿里云ONS支持消息轨迹

开发语言友好性

  • Kafka采用Scala编写
  • RocketMQ采用Java语言编写

Broker端消息过滤

  • Kafka不支持Broker端的消息过滤
  • RocketMQ支持两种Broker端消息过滤方式
    • 根据Message Tag来过滤,相当于子topic概念
    • 向服务器上传一段Java代码,可以对消息做任意形式的过滤,甚至可以做Message Body的过滤拆分。

消息堆积能力

理论上Kafka要比RocketMQ的堆积能力更强,不过RocketMQ单机也可以支持亿级的消息堆积能力,我们认为这个堆积能力已经完全可以满足业务需求。

开源社区活跃度

商业支持

成熟度

  • Kafka在日志领域比较成熟
  • RocketMQ在阿里集团内部有大量的应用在使用,每天都产生海量的消息,并且顺利支持了多次天猫双十一海量消息考验,是数据削峰填谷的利器。
分享到:
评论

相关推荐

    MQ对比RocketMQ、Kafka、RabbitMQ

    MQ对比

    RocketMQ、ActiveMQ 、Kafka对比.xlsx

    RocketMQ、ActiveMQ 、Kafka对比官方原版文档翻译。 SDK客户端 协议和规范 订阅消息 预定消息 批量消息 广播消息 消息过滤 服务器触发重新传递 消息存储 消息追溯 消息优先级 高可用性和故障转移 消息跟踪 配置 管理...

    kafka开发和rocketmq消息技术文档

    通过阅读《Kafka 权威指南》和《RocketMQ 实战与原理解析》这两本书,你可以深入理解这两个消息中间件的架构、配置、最佳实践以及如何在实际项目中应用它们。对于分布式消息系统的设计和实现,这两份文档将提供宝贵...

    消息中间件技术选型,包括ActiveMQ、Apollo、RabbitMQ、RocketMQ、Kafka、Redis、ZeroMQ

    消息中间件技术选型,ActiveMQ、Apollo、RabbitMQ、RocketMQ、Kafka、Redis、ZeroMQ多维护对比分析

    消息中间件的一点经验 rabbitmq、activemq、rocketmq、kafka-mq-research.zip

    Kafka Connect允许与其他数据存储系统集成,便于构建数据管道。 在选择消息中间件时,应考虑以下因素:是否符合项目的技术栈(如支持的协议和编程语言)、性能需求(如处理速度、吞吐量和延迟)、稳定性(如故障...

    横贯八方揭秘RabbitMQ、RocketMQ、Kafka 的核心原理(建议收藏).doc

    RabbitMQ、RocketMQ、Kafka核心原理剖析 RabbitMQ 是一个基于 AMQP(Advanced Message Queuing Protocol)协议的消息队列系统,具有高可靠性、可扩展性和高性能的特点。下面是 RabbitMQ 的核心组件和原理: 1. ...

    MQ对比:Kafka VS Rocketmq VS Rabbitmq.pdf

    MQ对比:Kafka VS Rocketmq VS Rabbitmq 超详细 ,值的收藏,参考资料

    Kafka vs RocketMQ—— Topic数量对单机性能的影响1

    在本文中,我们将对比分析Apache Kafka与Apache RocketMQ在处理大量Topic时的性能表现。上一期测试主要关注了三款消息中间件(Kafka、RabbitMQ、RocketMQ)在简单消息发送场景下的性能,而本期则模拟了一个更为实际...

    开源bbs源码java-masterSpring:SSM+ZooKeeper+RPC+Dubbo+MQ(RocketMQ,Kafka)学习实践

    MQ(RocketMQ, Kafka) 学习实践 目录 1. 1)。 工具版本: JDK :1.8 IDE :IntelliJ IDEA 2018.3.2 x64 Encoding :UTF-8 spring.version :4.6.2 mysql.version :8.0.18 2)。 码头登录: 3)。数据库代码 mysql> ...

    消息中间件kafka与activemq、rabbitmq、zeromq、rocketmq的比较

    #### Kafka与Activemq、Rabbitmq、ZeroMq、Rocketmq的比较 在现代分布式系统中,消息中间件(Message Queue, MQ)扮演着至关重要的角色,它们用于在分布式组件之间传输消息,帮助解决网络延迟、组件故障等问题,...

    RocketMQ的使用、原理

    #### 二、RocketMQ与Kafka对比分析 RocketMQ与Kafka是两款非常受欢迎的消息中间件,各有优势: - **Kafka**以其无限消息堆积能力和高效的持久化速度著称,特别适合于日志传输场景。 - **RocketMQ**则因其支持严格...

    kafka 知识要点,基于0.9、 0.10版本,很全面

    ### Kafka核心概念与架构 #### 1. Kafka 架构概览 Kafka 是一款分布式流处理平台,广泛应用于实时数据处理场景。其核心组件包括Broker、Topic、Partition、Segment和Controller。 - **Broker**: 消息中间件处理...

    消息中间件消息队列常见面试题

    【RocketMQ与Kafka的底层存储】 RocketMQ和Kafka的底层存储机制是它们能够快速处理大量消息的关键。两者的存储都基于磁盘,但具体实现各有特点。RocketMQ使用了分布式存储和CommitLog机制,而Kafka则利用了高效的...

    Kafka技术内幕-图文详解Kafka源码设计与实现

    Kafka自LinkedIn开源以来就以高性能、高吞吐量、分布式的特性著称,本书以0.10版本的源码为基础,深入分析了Kafka的设计与实现,包括生产者和消费者的消息处理流程,新旧消费者不同的设计方式,存储层的实现,协调者...

    kafkatool 连接kafka工具

    `kafkatool` 是由 LinkedIn 开发的一款开源命令行工具,它提供了与 Kafka 集群交互的各种功能,包括但不限于创建和管理主题、检查消费者组状态、数据备份与恢复等。这个工具支持 SSL 和 SASL 安全认证,可以用于管理...

    kafka集群方案选型

    在当前的消息中间件产品市场中,存在多种选择,包括ActiveMQ、RabbitMQ、RocketMQ、Kafka、ZeroMQ等。每种产品都有其优缺点,本文将对这些产品进行比较,阐述Kafka集群方案选型的必要性和可行性。 一、消息中间件...

    flume与kafka整合需要的jar包

    整合Flume与Kafka的关键在于Flume的类路径中包含正确的jar包,这样才能让Flume理解如何与Kafka通信。以下是可能需要的jar包列表: 1. `flume-kafka-sink.jar`:这是Flume Kafka Sink的实现,它提供了Flume与Kafka...

    Kafka技术内幕:图文详解Kafka源码设计与实现+书签.pdf+源码

    《Kafka技术内幕:图文详解Kafka源码设计与实现》是一本深入解析Apache Kafka的专著,旨在帮助读者理解Kafka的核心设计理念、内部机制以及源码实现。这本书结合图文并茂的方式,使得复杂的概念变得更为易懂。同时,...

    Kafka vs RocketMQ多Topic对性能稳定性的影响1

    下的测试对图,是来评测汗宝马和蒸汽机车谁快的组竞速曲线:图1 汗宝马和蒸汽车的速度稳定性对上图的横轴表测试时间,纵轴表车和马的速度,可以看到,马的加速和最速度均

    spark与kafka集成

    Apache Spark与Apache Kafka的集成是大数据处理领域中的一个重要话题,特别是在实时流处理中。Kafka是一个高可用、高性能的消息中间件,它支持发布/订阅模式,可以作为数据管道,将数据从生产者传递到消费者。Spark...

Global site tag (gtag.js) - Google Analytics