`
z01_ejdazhi
  • 浏览: 1394 次
最近访客 更多访客>>
文章分类
社区版块
存档分类
最新评论

spark性能调优与BUG修正

阅读更多

做了一年延云YDB的开发,这一年在使用spark上真心踩了不少坑,总结一下,希望对大家有所帮助。

spark 内存泄露

1.高并发情况下的内存泄露的具体表现

很遗憾,Spark的设计架构并不是为了高并发请求而设计的,我们尝试在网络条件不好的集群下,进行100并发的查询,在压测3天后发现了内存泄露。

a)在进行大量小SQL的压测过程中发现,有大量的activejob在spark ui上一直处于pending状态,且永远不结束,如下图所示

 

b)并且发现driver内存爆满

 

c)用内存分析分析工具分析了下

 

2.高并发下AsynchronousListenerBus引起的WEB UI的内存泄露

短时间内 SPARK 提交大量的SQL ,而且SQL里面存在大量的 union与join的情形,会创建大量的event对象,使得这里的 event数量超过10000个event ,

一旦超过10000个event就开始丢弃 event,而这个event是用来回收 资源的,丢弃了 资源就无法回收了
。 针对UI页面的这个问题,我们将这个队列长度的限制给取消了。

 

 

 

 

 

 

3.AsynchronousListenerBus本身引起的内存泄露

抓包发现


 

 

 

这些event是通过post方法传递的,并写入到队列里

 

 

但是也是由一个单线程进行postToAll的

 

 

但是在高并发情况下,单线程的postToAll的速度没有post的速度快,会导致队列堆积的event越来越多,如果是持续性的高并发的SQL查询,这里就会导致内存泄露

 

接下来我们在分析下postToAll的方法里面,那个路径是最慢的,导致事件处理最慢的逻辑是那个?

 

 

 

 


可能您都不敢相信,通过jstack抓取分析,程序大部分时间都阻塞在记录日志上

 

可以通过禁用这个地方的log来提升event的速度

 

log4j.logger.org.apache.spark.scheduler=ERROR

 


 

 

 

4.高并发下的Cleaner的内存泄露

       说道这里,Cleaner的设计应该算是spark最糟糕的设计。spark的ContextCleaner是用于回收与清理已经完成了的 广播boradcast,shuffle数据的。但是高并发下,我们发现这个地方积累的数据会越来越多,最终导致driver内存跑满而挂掉。

l我们先看下,是如何触发内存回收的

 

      没错,就是通过System.gc() 回收的内存,如果我们在jvm里配置了禁止执行System.gc,这个逻辑就等于废掉(而且有很多jvm的优化参数一般都推荐配置禁止system.gc 参数)

lclean过程

这是一个单线程的逻辑,而且每次清理都要协同很多机器一同清理,清理速度相对来说比较慢,但是SQL并发很大的时候,产生速度超过了清理速度,整个driver就会发生内存泄露。而且brocadcast如果占用内存太多,也会使用非常多的本地磁盘小文件,我们在测试中发现,高持续性并发的情况下本地磁盘用于存储blockmanager的目录占据了我们60%的存储空间。

 

 

我们再来分析下 clean里面,那个逻辑最慢

 

真正的瓶颈在于blockManagerMaster里面的removeBroadcast,因为这部分逻辑是需要跨越多台机器的。

 

针对这种问题,

l我们在SQL层加了一个SQLWAITING逻辑,判断了堆积长度,如果堆积长度超过了我们的设定值,我们这里将阻塞新的SQL的执行。堆积长度可以通过更改conf目录下的ya100_env_default.sh中的ydb.sql.waiting.queue.size的值来设置。

 

l建议集群的带宽要大一些,万兆网络肯定会比千兆网络的清理速度快很多。

l给集群休息的机会,不要一直持续性的高并发,让集群有间断的机会。

l增大spark的线程池,可以调节conf下的spark-defaults.conf的如下值来改善。

 

 

 

5.线程池与threadlocal引起的内存泄露

       发现spark,Hive,lucene都非常钟爱使用threadlocal来管理临时的session对象,期待SQL执行完毕后这些对象能够自动释放,但是与此同时spark又使用了线程池,线程池里的线程一直不结束,这些资源一直就不释放,时间久了内存就堆积起来了。

针对这个问题,延云修改了spark关键线程池的实现,更改为每1个小时,强制更换线程池为新的线程池,旧的线程数能够自动释放。

 

6.文件泄露

      您会发现,随着请求的session变多,spark会在hdfs和本地磁盘创建海量的磁盘目录,最终会因为本地磁盘与hdfs上的目录过多,而导致文件系统和整个文件系统瘫痪。在YDB里面我们针对这种情况也做了处理。

 

7.deleteONExit内存泄露

 

 

 

 

 

为什么会有这些对象在里面,我们看下源码

 

 

 

 

 

 

 

 

8.JDO内存泄露

多达10万多个JDOPersistenceManager

 


 

 

 


 


 

 

 

 

 

 

 

 

9.listerner内存泄露

通过debug工具监控发现,spark的listerner随着时间的积累,通知(post)速度运来越慢

发现所有代码都卡在了onpostevent上

 

 

 

 

 

jstack的结果如下


 

 

研究下了调用逻辑如下,发现是循环调用listerners,而且listerner都是空执行才会产生上面的jstack截图

 

 

通过内存发现有30多万个linterner在里面

 

 

发现都是大多数都是同一个listener,我们核对下该处源码

 

 

最终定位问题

确系是这个地方的BUG ,每次创建JDBC连接的时候 ,spark就会增加一个listener, 时间久了,listener就会积累越来越多  针对这个问题 我简单的修改了一行代码,开始进入下一轮的压测

 

 

 

 

二十二、spark源码调优

      测试发现,即使只有1条记录,使用 spark进行一次SQL查询也会耗时1秒,对很多即席查询来说1秒的等待,对用户体验非常不友好。针对这个问题,我们在spark与hive的细节代码上进行了局部调优,调优后,响应时间由原先的1秒缩减到现在的200~300毫秒。

      

以下是我们改动过的地方

1.SessionState 的创建目录 占用较多的时间

 

 

另外使用Hadoop namenode HA的同学会注意到,如果第一个namenode是standby状态,这个地方会更慢,就不止一秒,所以除了改动源码外,如果使用namenode ha的同学一定要注意,将active状态的node一定要放在前面。

2.HiveConf的初始化过程占用太多时间

频繁的hiveConf初始化,需要读取core-default.xml,hdfs-default.xml,yarn-default.xml

,mapreduce-default.xml,hive-default.xml等多个xml文件,而这些xml文件都是内嵌在jar包内的。

第一,解压这些jar包需要耗费较多的时间,第二每次都对这些xml文件解析也耗费时间。

 

 

 

 

 

 

 

 

 

 

 

 

3.广播broadcast传递的hadoop configuration序列化很耗时

lconfiguration的序列化,采用了压缩的方式进行序列化,有全局锁的问题

lconfiguration每次序列化,传递了太多了没用的配置项了,1000多个配置项,占用60多Kb。我们剔除了不是必须传输的配置项后,缩减到44个配置项,2kb的大小。

 

 

 

 

 

 

4.对spark广播数据broadcast的Cleaner的改进

 

由于SPARK-3015 的BUG,spark的cleaner 目前为单线程回收模式。

大家留意spark源码注释

 

 

 

其中的单线程瓶颈点在于广播数据的cleaner,由于要跨越很多机器,需要通过akka进行网络交互。

如果回收并发特别大,SPARK-3015 的bug报告会出现网络拥堵,导致大量的 timeout出现。

为什么回收量特变大呢? 其实是因为cleaner 本质是通过system.gc(),定期执行的,默认积累30分钟或者进行了gc后才触发cleaner,这样就会导致瞬间,大量的akka并发执行,集中释放,网络不瞬间瘫痪才不怪呢。

但是单线程回收意味着回收速度
恒定,如果查询并发很大,回收速度跟不上cleaner的速度,会导致cleaner积累很多,会导致进程OOM(YDB做了修改,会限制前台查询的并发)。

不论是OOM还是限制并发都不是我们希望看到的,所以针对高并发情况下,这种单线程的回收速度是满足不了高并发的需求的。


对于官方的这样的做法,我们表示并不是一个完美的cleaner方案。并发回收一定要支持,只要解决akka的timeout问题即可。
所以这个问题要仔细分析一下,akka为什么会timeout,是因为cleaner占据了太多的资源,那么我们是否可以控制下cleaner的并发呢?比如说使用4个并发,而不是默认将全部的并发线程都给占满呢?这样及解决了cleaner的回收速度,也解决了akka的问题不是更好么?

针对这个问题,我们最终还是选择了修改spark的ContextCleaner对象,将广播数据的回收 改成多线程的方式,但现在了线程的并发数量,从而解决了该问题。

分享到:
评论

相关推荐

    Spark性能调优分享

    我们谈大数据性能调优,到底在谈什么,它的本质是什么,以及 Spark 在性能调优部份的要点,这两点让在进入性能调优之前都是一个至关重要的问题,它的本质限制了我们调优到底要达到一个什么样的目标或者说我们是从...

    spark性能调优

    Spark性能调优是大数据处理领域中的一个重要话题,它涉及到如何最大化地利用计算资源,提高数据处理的速度和效率。以下是对Spark性能调优的一些关键知识点的详细解析: 1. **资源调度与分配**:Spark默认使用的是...

    spark性能调优文档

    Spark性能调优是提高大数据处理效率的关键步骤,尤其在处理大规模数据时,高效的资源配置和并行度设置至关重要。本文将详细解析如何通过分配更多资源和提高并行度来优化Spark作业的性能。 **1. 分配更多的资源** ...

    大数据处理框架:Spark:Spark性能调优与故障排查.docx

    大数据处理框架:Spark:Spark性能调优与故障排查.docx

    spark性能调优与spark SQL项目代码分享

    spark性能调优,共包含了调优的最佳方法,以及JVM调优,troubleshooting,数据倾斜的使用方法。 为了更好的搭配该性能调优方案,顾把项目也分享给大家。 并且,代码有了一份scala 编写的spark SQL我会分享到github上...

    Apache Spark:Spark性能调优.docx

    Apache Spark:Spark性能调优.docx

    02-Spark性能调优与故障处理.doc

    《Spark性能调优与故障处理》 Spark作为一个强大的分布式计算框架,其性能调优和故障处理是提升系统效率和稳定性的重要环节。本文主要探讨Spark的性能优化策略,包括常规性能调优、算子调优、shuffle调优、JVM调优...

    深度解密Spark性能优化之道课程-课程网盘链接提取码下载.txt

    课程内容涵盖了Spark性能调优的各个方面,包括内存管理、并行度设置、数据倾斜处理、Shuffle调优、资源配置等关键技术和策略。学员将通过实际案例的演示和分析,掌握解决Spark应用性能问题的方法和技巧,从而提升...

    spark性能调优参数总结

    Spark是一个强大的分布式计算系统,它的性能调优是大数据处理中非常关键的一个环节。在Spark中,性能调优的参数非常丰富,其中Shuffle操作是影响Spark性能的一个重要因素。Shuffle操作涉及到排序、磁盘IO、网络IO等...

    spark性能调优经验总结

    该xmind文件介绍了spark性能调优时涉及到的各个方面。

    spark性能调优的几大原则

    需要注意的是,性能调优并非一蹴而就的过程,需要结合具体的业务场景进行细致的分析与调整。同时,随着Spark版本的不断更新和改进,新的优化技术和工具也将陆续推出,开发者应保持学习的心态,不断提升自身的技能...

    Spark性能调优和数据倾斜解决方案

    ### Spark性能调优和数据倾斜解决方案 #### 一、引言 随着大数据处理需求的日益增长,Apache Spark作为主流的大数据分析引擎之一,其性能优化变得至关重要。本文将深入探讨Spark性能调优的关键技术和方法,特别是在...

    Spark大数据商业实战三部曲:内核解密|商业案例|性能调优

    以Spark内核解密为基石,分为上篇、中篇、下篇,对企业生产环境下的Spark商业案例与性能调优抽丝剥茧地进行剖析。上篇基于Spark源码,从一个动手资源太大,传百度网盘了,链接在附件中,有需要的同学自取。

    【Spark调优篇01】Spark之常规性能调优1

    《Spark之常规性能调优详解》 Spark作为一个强大的大数据处理框架,其性能调优是确保高效运行的关键。本文主要探讨Spark的常规性能调优策略,包括资源分配优化和RDD优化,旨在帮助用户最大化利用资源,提升任务执行...

    Spark性能优化指南.pdf

    ### Spark性能优化指南 #### 一、基础篇:开发调优与资源调优 ##### 1. 开发调优 **1.1 调优概述** 开发阶段的调优至关重要,它涉及到如何构建Spark应用的基本框架。在开发Spark应用程序时,有几个基本原则需要...

    Spark性能调优

    ### Spark性能调优详解 #### 一、引言 随着大数据技术的发展,Apache Spark作为一款通用的大数据分析引擎,因其高效的数据处理能力而受到广泛青睐。然而,在实际应用中,为了充分发挥Spark的优势,对其进行合理的...

    Spark内核剖析+调优全套教程 附课件、代码、资料

    Spark内核深度剖析 Spark调优 SparkSQL精讲 SparkStreaming精讲 Spark2新特性

    Spark与Spark SQL调优指南

    Apache Spark被业内广泛应用于离线与实时计算,如何对Spark进行参数调优会严重影响线上任务的执行性能。通过本调优指南的学习,会让你对Spark的调优技能迈上一个新台阶!

    Spark:内核机制解析及性能调优

    Spark:内核机制解析及性能调优

Global site tag (gtag.js) - Google Analytics