`

lock

 
阅读更多

http://www.jb51.net/article/88076.htm

 

关于互斥锁

所谓互斥锁, 指的是一次最多只能有一个线程持有的锁. 在jdk1.5之前, 我们通常使用synchronized机制控制多个线程对共享资源的访问. 而现在, Lock提供了比synchronized机制更广泛的锁定操作, Lock和synchronized机制的主要区别:
synchronized机制提供了对与每个对象相关的隐式监视器锁的访问, 并强制所有锁获取和释放均要出现在一个块结构中, 当获取了多个锁时, 它们必须以相反的顺序释放. synchronized机制对锁的释放是隐式的, 只要线程运行的代码超出了synchronized语句块范围, 锁就会被释放. 而Lock机制必须显式的调用Lock对象的unlock()方法才能释放锁, 这为获取锁和释放锁不出现在同一个块结构中, 以及以更自由的顺序释放锁提供了可能。

1. ReentrantLock介绍
ReentrantLock是一个可重入的互斥锁,又被称为“独占锁”。
顾名思义,ReentrantLock锁在同一个时间点只能被一个线程锁持有;而可重入的意思是,ReentrantLock锁,可以被单个线程多次获取。
ReentrantLock分为“公平锁”和“非公平锁”。它们的区别体现在获取锁的机制上是否公平。“锁”是为了保护竞争资源,防止多个线程同时操作线程而出错,ReentrantLock在同一个时间点只能被一个线程获取(当某线程获取到“锁”时,其它线程就必须等待);ReentraantLock是通过一个FIFO的等待队列来管理获取该锁所有线程的。在“公平锁”的机制下,线程依次排队获取锁;而“非公平锁”在锁是可获取状态时,不管自己是不是在队列的开头都会获取锁。

ReentrantLock函数列表

// 创建一个 ReentrantLock ,默认是“非公平锁”。
ReentrantLock()
// 创建策略是fair的 ReentrantLock。fair为true表示是公平锁,fair为false表示是非公平锁。
ReentrantLock(boolean fair)
 
// 查询当前线程保持此锁的次数。
int getHoldCount()
// 返回目前拥有此锁的线程,如果此锁不被任何线程拥有,则返回 null。
protected Thread getOwner()
// 返回一个 collection,它包含可能正等待获取此锁的线程。
protected Collection<Thread> getQueuedThreads()
// 返回正等待获取此锁的线程估计数。
int getQueueLength()
// 返回一个 collection,它包含可能正在等待与此锁相关给定条件的那些线程。
protected Collection<Thread> getWaitingThreads(Condition condition)
// 返回等待与此锁相关的给定条件的线程估计数。
int getWaitQueueLength(Condition condition)
// 查询给定线程是否正在等待获取此锁。
boolean hasQueuedThread(Thread thread)
// 查询是否有些线程正在等待获取此锁。
boolean hasQueuedThreads()
// 查询是否有些线程正在等待与此锁有关的给定条件。
boolean hasWaiters(Condition condition)
// 如果是“公平锁”返回true,否则返回false。
boolean isFair()
// 查询当前线程是否保持此锁。
boolean isHeldByCurrentThread()
// 查询此锁是否由任意线程保持。
boolean isLocked()
// 获取锁。
void lock()
// 如果当前线程未被中断,则获取锁。
void lockInterruptibly()
// 返回用来与此 Lock 实例一起使用的 Condition 实例。
Condition newCondition()
// 仅在调用时锁未被另一个线程保持的情况下,才获取该锁。
boolean tryLock()
// 如果锁在给定等待时间内没有被另一个线程保持,且当前线程未被中断,则获取该锁。
boolean tryLock(long timeout, TimeUnit unit)
// 试图释放此锁。
void unlock()

 2. ReentrantLock示例

通过对比“示例1”和“示例2”,我们能够清晰的认识lock和unlock的作用
2.1 示例1

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
 
// LockTest1.java
// 仓库
class Depot { 
 private int size;  // 仓库的实际数量
 private Lock lock;  // 独占锁
 
 public Depot() {
  this.size = 0;
  this.lock = new ReentrantLock();
 }
 
 public void produce(int val) {
  lock.lock();
  try {
   size += val;
   System.out.printf("%s produce(%d) --> size=%d\n", 
     Thread.currentThread().getName(), val, size);
  } finally {
   lock.unlock();
  }
 }
 
 public void consume(int val) {
  lock.lock();
  try {
   size -= val;
   System.out.printf("%s consume(%d) <-- size=%d\n", 
     Thread.currentThread().getName(), val, size);
  } finally {
   lock.unlock();
  }
 }
}; 
 
// 生产者
class Producer {
 private Depot depot;
 
 public Producer(Depot depot) {
  this.depot = depot;
 }
 
 // 消费产品:新建一个线程向仓库中生产产品。
 public void produce(final int val) {
  new Thread() {
   public void run() {
    depot.produce(val);
   }
  }.start();
 }
}
 
// 消费者
class Customer {
 private Depot depot;
 
 public Customer(Depot depot) {
  this.depot = depot;
 }
 
 // 消费产品:新建一个线程从仓库中消费产品。
 public void consume(final int val) {
  new Thread() {
   public void run() {
    depot.consume(val);
   }
  }.start();
 }
}
 
public class LockTest1 { 
 public static void main(String[] args) { 
  Depot mDepot = new Depot();
  Producer mPro = new Producer(mDepot);
  Customer mCus = new Customer(mDepot);
 
  mPro.produce(60);
  mPro.produce(120);
  mCus.consume(90);
  mCus.consume(150);
  mPro.produce(110);
 }
}

 运行结果:

Thread-0 produce(60) --> size=60
Thread-1 produce(120) --> size=180
Thread-3 consume(150) <-- size=30
Thread-2 consume(90) <-- size=-60
Thread-4 produce(110) --> size=50
 
结果分析:
(1) Depot 是个仓库。通过produce()能往仓库中生产货物,通过consume()能消费仓库中的货物。通过独占锁lock实现对仓库的互斥访问:在操作(生产/消费)仓库中货品前,会先通过lock()锁住仓库,操作完之后再通过unlock()解锁。
(2) Producer是生产者类。调用Producer中的produce()函数可以新建一个线程往仓库中生产产品。
(3) Customer是消费者类。调用Customer中的consume()函数可以新建一个线程消费仓库中的产品。
(4) 在主线程main中,我们会新建1个生产者mPro,同时新建1个消费者mCus。它们分别向仓库中生产/消费产品。
根据main中的生产/消费数量,仓库最终剩余的产品应该是50。运行结果是符合我们预期的!
这个模型存在两个问题:
(1) 现实中,仓库的容量不可能为负数。但是,此模型中的仓库容量可以为负数,这与现实相矛盾!
(2) 现实中,仓库的容量是有限制的。但是,此模型中的容量确实没有限制的!
这两个问题,我们稍微会讲到如何解决。现在,先看个简单的示例2;通过对比“示例1”和“示例2”,我们能更清晰的认识lock(),unlock()的用途。
 
2.2 示例2
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
 
// LockTest2.java
// 仓库
class Depot { 
  private int size;    // 仓库的实际数量
  private Lock lock;    // 独占锁
 
  public Depot() {
    this.size = 0;
    this.lock = new ReentrantLock();
  }
 
  public void produce(int val) {
//    lock.lock();
//    try {
      size += val;
      System.out.printf("%s produce(%d) --> size=%d\n", 
          Thread.currentThread().getName(), val, size);
//    } catch (InterruptedException e) {
//    } finally {
//      lock.unlock();
//    }
  }
 
  public void consume(int val) {
//    lock.lock();
//    try {
      size -= val;
      System.out.printf("%s consume(%d) <-- size=%d\n", 
          Thread.currentThread().getName(), val, size);
//    } finally {
//      lock.unlock();
//    }
  }
};
 
// 生产者
class Producer {
  private Depot depot;
 
  public Producer(Depot depot) {
    this.depot = depot;
  }
 
  // 消费产品:新建一个线程向仓库中生产产品。
  public void produce(final int val) {
    new Thread() {
      public void run() {
        depot.produce(val);
      }
    }.start();
  }
}
 
// 消费者
class Customer {
  private Depot depot;
 
  public Customer(Depot depot) {
    this.depot = depot;
  }
 
  // 消费产品:新建一个线程从仓库中消费产品。
  public void consume(final int val) {
    new Thread() {
      public void run() {
        depot.consume(val);
      }
    }.start();
  }
}
 
public class LockTest2 { 
  public static void main(String[] args) { 
    Depot mDepot = new Depot();
    Producer mPro = new Producer(mDepot);
    Customer mCus = new Customer(mDepot);
 
    mPro.produce(60);
    mPro.produce(120);
    mCus.consume(90);
    mCus.consume(150);
    mPro.produce(110);
  }
}
 Thread-0 produce(60) --> size=-60
Thread-4 produce(110) --> size=50
Thread-2 consume(90) <-- size=-60
Thread-1 produce(120) --> size=-60
Thread-3 consume(150) <-- size=-60
 

结果说明:
“示例2”在“示例1”的基础上去掉了lock锁。在“示例2”中,仓库中最终剩余的产品是-60,而不是我们期望的50。原因是我们没有实现对仓库的互斥访问。

2.3 示例3
在“示例3”中,我们通过Condition去解决“示例1”中的两个问题:“仓库的容量不可能为负数”以及“仓库的容量是有限制的”。
解决该问题是通过Condition。Condition是需要和Lock联合使用的:通过Condition中的await()方法,能让线程阻塞[类似于wait()];通过Condition的signal()方法,能让唤醒线程[类似于notify()]。

 

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.Condition;
 
// LockTest3.java
// 仓库
class Depot {
  private int capacity;  // 仓库的容量
  private int size;    // 仓库的实际数量
  private Lock lock;    // 独占锁
  private Condition fullCondtion;      // 生产条件
  private Condition emptyCondtion;    // 消费条件
 
  public Depot(int capacity) {
    this.capacity = capacity;
    this.size = 0;
    this.lock = new ReentrantLock();
    this.fullCondtion = lock.newCondition();
    this.emptyCondtion = lock.newCondition();
  }
 
  public void produce(int val) {
    lock.lock();
    try {
       // left 表示“想要生产的数量”(有可能生产量太多,需多此生产)
      int left = val;
      while (left > 0) {
        // 库存已满时,等待“消费者”消费产品。
        while (size >= capacity)
          fullCondtion.await();
        // 获取“实际生产的数量”(即库存中新增的数量)
        // 如果“库存”+“想要生产的数量”>“总的容量”,则“实际增量”=“总的容量”-“当前容量”。(此时填满仓库)
        // 否则“实际增量”=“想要生产的数量”
        int inc = (size+left)>capacity ? (capacity-size) : left;
        size += inc;
        left -= inc;
        System.out.printf("%s produce(%3d) --> left=%3d, inc=%3d, size=%3d\n", 
            Thread.currentThread().getName(), val, left, inc, size);
        // 通知“消费者”可以消费了。
        emptyCondtion.signal();
      }
    } catch (InterruptedException e) {
    } finally {
      lock.unlock();
    }
  }
 
  public void consume(int val) {
    lock.lock();
    try {
      // left 表示“客户要消费数量”(有可能消费量太大,库存不够,需多此消费)
      int left = val;
      while (left > 0) {
        // 库存为0时,等待“生产者”生产产品。
        while (size <= 0)
          emptyCondtion.await();
        // 获取“实际消费的数量”(即库存中实际减少的数量)
        // 如果“库存”<“客户要消费的数量”,则“实际消费量”=“库存”;
        // 否则,“实际消费量”=“客户要消费的数量”。
        int dec = (size<left) ? size : left;
        size -= dec;
        left -= dec;
        System.out.printf("%s consume(%3d) <-- left=%3d, dec=%3d, size=%3d\n", 
            Thread.currentThread().getName(), val, left, dec, size);
        fullCondtion.signal();
      }
    } catch (InterruptedException e) {
    } finally {
      lock.unlock();
    }
  }
 
  public String toString() {
    return "capacity:"+capacity+", actual size:"+size;
  }
};
 
// 生产者
class Producer {
  private Depot depot;
 
  public Producer(Depot depot) {
    this.depot = depot;
  }
 
  // 消费产品:新建一个线程向仓库中生产产品。
  public void produce(final int val) {
    new Thread() {
      public void run() {
        depot.produce(val);
      }
    }.start();
  }
}
 
// 消费者
class Customer {
  private Depot depot;
 
  public Customer(Depot depot) {
    this.depot = depot;
  }
 
  // 消费产品:新建一个线程从仓库中消费产品。
  public void consume(final int val) {
    new Thread() {
      public void run() {
        depot.consume(val);
      }
    }.start();
  }
}
 
public class LockTest3 { 
  public static void main(String[] args) { 
    Depot mDepot = new Depot(100);
    Producer mPro = new Producer(mDepot);
    Customer mCus = new Customer(mDepot);
 
    mPro.produce(60);
    mPro.produce(120);
    mCus.consume(90);
    mCus.consume(150);
    mPro.produce(110);
  }
}

 (某一次)运行结果:

1
2
3
4
5
6
7
8
9
10
Thread-0 produce( 60) --> left= 0, inc= 60, size= 60
Thread-1 produce(120) --> left= 80, inc= 40, size=100
Thread-2 consume( 90) <-- left= 0, dec= 90, size= 10
Thread-3 consume(150) <-- left=140, dec= 10, size= 0
Thread-4 produce(110) --> left= 10, inc=100, size=100
Thread-3 consume(150) <-- left= 40, dec=100, size= 0
Thread-4 produce(110) --> left= 0, inc= 10, size= 10
Thread-3 consume(150) <-- left= 30, dec= 10, size= 0
Thread-1 produce(120) --> left= 0, inc= 80, size= 80
Thread-3 consume(150) <-- left= 0, dec= 30, size= 50
分享到:
评论

相关推荐

    Capslock++,Capslock键利器

    标题中的"Capslock++"指的是一个利用AutoHotkey脚本技术改造 Capslock 键的工具,旨在提升用户在计算机操作中的工作效率。Capslock键通常用于切换字母大小写,但通过 Capslock++,我们可以将其功能扩展到更高效的...

    lock(this)的使用说明

    "lock(this)的使用说明" lock(this)是C#语言中的一种同步机制,用于确保在多线程环境下对共享资源的访问安全。通过使用lock(this)语句,可以保证在同一时刻只有一个线程可以访问某个资源,防止多个线程同时访问同...

    AHK-CapsLock修改为回车-左手快捷键.ahk

    关键字-回车映射-ahk回车映射-左手回车 ;;快捷键x说明 上下左右 ... CapsLock+q 箭头上--防止误触屏-CapsLock+q也映射为箭头上 ;; CapsLock+e 删除键-删除前面的-Backspace ;; CapsLock+r 删除键-删除后面的--Del

    彻底搞清楚library cache lock的成因和解决方法

    ### 彻底理解 Oracle 中 Library Cache Lock 的成因与解决办法 #### 一、引言 在日常数据库管理工作中,经常会遇到一些让人头疼的问题,比如会话挂起(hang)。其中一个常见的情况是当用户尝试执行某些操作时,比如...

    lock4j高性能分布式锁 v2.2.6.zip

    《lock4j高性能分布式锁详解》 分布式锁是分布式系统中的关键组件,它在多节点共享资源时确保了数据的一致性和并发控制。lock4j作为一款高性能的分布式锁,为开发者提供了简单易用且高效的解决方案。本文将深入探讨...

    获去CapsLock键的状态

    在计算机使用过程中,CapsLock键是一个非常特殊的功能键,它用于切换输入的大写和小写字母。对于程序员或者日常用户来说,了解CapsLock键的状态有时是必要的,例如在编写代码时确保大小写的正确性,或者在输入密码时...

    lock on 2.0 免1.1补丁

    《Lock On 2.0 免1.1补丁详解》 Lock On是一款深受飞行模拟爱好者喜爱的游戏,它以其高度真实、细腻的飞行体验而闻名。在Lock On 2.0版本中,开发者进一步提升了游戏的图形表现力、飞行模型的真实度以及战斗系统的...

    判断Caps Lock键是否开/关

    标题中的“判断Caps Lock键是否开/关”指的是在编程或系统操作中,我们需要检测计算机上的Caps Lock(大写锁定)键是否处于开启或关闭状态。这个功能在各种应用场景中都可能用到,例如,为了确保用户在输入密码时...

    实现yarnlock与packagelockjson相互转换

    `yarn.lock` 和 `package-lock.json` 文件都是npm和yarn包管理器为了确保项目依赖一致性而生成的文件。本篇文章将详细探讨这两个文件的作用、差异以及如何实现它们之间的相互转换。 ### `yarn.lock` 文件 `yarn....

    Lock-in Amplifier.pdf

    significance of a lock-in amplifier. As an introduction to the subject there follows a simple intuitive account biased towards light measurement applications. All lock-in amplifiers, whether ...

    笔记本电脑大写键CAPSLOCK状态显示软件

    标题中的“笔记本电脑大写键CAPSLOCK状态显示软件”是指一个专为笔记本电脑设计的程序,该程序能够实时显示当前大写锁定键(CAPSLOCK)的状态。开发者使用C#编程语言创建了这个应用,这表明它基于.NET框架运行,并且...

    C#实操控制并发之Lock和Redis分布式锁

    本文将深入探讨C#中如何使用Lock和Redis分布式锁来解决并发问题,以秒杀系统为例进行阐述。 首先,让我们理解什么是并发控制。并发控制是指在多线程环境下确保数据的一致性和完整性,防止多个线程同时访问同一资源...

    技嘉BIOS解锁CFG Lock AMIBCP.zip

    标题中的“技嘉BIOS解锁CFG Lock AMIBCP.zip”是指一项针对技嘉主板BIOS的修改操作,目的是解锁CFG Lock功能。CFG Lock是许多现代主板上的一项安全设置,用于防止用户非授权地更改CPU的超频选项,以保护系统稳定性和...

    redisson lock和tryLock 分布式锁简单练习

    redisson lock和tryLock 分布式锁简单练习

    Lock总结.doc

    【Lock总结】 在Java多线程编程中,`Lock`接口是Java并发包(`java.util.concurrent.locks`)提供的一种高级锁机制,相比传统的`synchronized`关键字,它提供了更灵活的控制方式。Lock接口的主要实现类是`...

    folder-lock6 注册码

    Folder Lock 是一款非常流行的文件加密和隐私保护软件,它可以帮助用户轻松地锁定、隐藏或加密其重要的文件、照片、视频等个人数据。这款软件适用于多种操作系统,包括 Windows 和 macOS,并且具有高度的安全性和...

    lock on 2.0汉化补丁

    "Lock On 2.0汉化补丁"是一款专门针对"Lock On"系列游戏的中文翻译更新,旨在为玩家提供更全面、更易理解的游戏体验。Lock On通常指的是Lock On: Modern Air Combat(锁定:现代空战),这是一款专注于现代战斗机...

    JAVA Lock加锁实例

    Lock锁是对象锁,仅在同一对象中,锁才会生效。(不做论证) (以下场景皆为单例模式下运行) lock.lock()的加锁方式,会使后续请求的线程堵塞等待。(方案A) lock.tryLock()的加锁方式,不会堵塞,会立即返回加锁...

    ubuntu-ubuntu切换Ctrl和CapsLock键.pdf

    ### Ubuntu系统中Ctrl与CapsLock键位互换的详细步骤 #### 一、背景介绍 在Ubuntu等Linux发行版中,默认情况下,Ctrl键通常位于键盘的左下角位置,而Caps Lock键则位于Shift键的右侧。对于部分用户而言,这种布局...

    解决ArcSDE版本lock问题

    ### 解决ArcSDE版本lock问题 #### 一、引言 在GIS(地理信息系统)领域,ArcSDE 是一种广泛使用的空间数据库引擎,它能够有效地管理大量的空间数据。然而,在实际操作过程中,用户可能会遇到...

Global site tag (gtag.js) - Google Analytics