`
gaojingsong
  • 浏览: 1212242 次
  • 性别: Icon_minigender_1
  • 来自: 深圳
文章分类
社区版块
存档分类
最新评论

Storm1.0新版本特性

阅读更多

This release represents a major milestone in the evolution of Apache Storm, and includes an immense number of new features, usability and performance improvements, some of which are highlighted below.

Storm 1.0.0版本增加了很多新的特性,可用性以及性能也得到了很大的改善,该版本是Storm发展历程上一个里程碑式的版本,目前最新版本是1.0.2但是方法参数和包名有很大变动,因此升级时候比较麻烦,以前有个方法传递byte[]参数,现在变为了javaNIO的ByteBuffer 



 

Improved Performance--性能提升

One of the main highlights in this release is a dramatice performance improvement over previous versions. Apache Storm 1.0 is *up to 16 times faster than previous versions, with latency reduced up to 60%. Obviously topology performance varies widely by use case and external service dependencies, but for most use cases users can expect a 3x performance boost over earlier versions.

Storm 1.0.0版本最大的亮点就是性能提升,和之前的版本先比,Storm 1.0的速度能够提升至16倍,延迟能够降低至60%。Storm的拓扑性能和应用案例以及依赖的外部服务相关,但是对于大部分应用,相对于之前的版本,性能能够实现3倍的提升。

 

Pacemaker - Heartbeat Server心跳服务器

Pacemaker is an optional Storm daemon designed to process heartbeats from workers. As Storm is scaled up, ZooKeeper begins to become a bottleneck due to high volumes of writes from workers doing heartbeats. Lots of writes to disk and large ammounts traffic across the network is generated as ZooKeeper tries to maintain consistency.

 

Because heartbeats are of an ephemeral nature, they do not need to be persisted to disk or synced across nodes, and an in-memory store will do. This is the role of Pacemaker. Pacemaker functions as a simple in-memory key/value store with ZooKeeper-like, directory-style keys and byte array values.

 

Distributed Cache API--分布式缓存API

In the past it was common for developers to bundle resources required by a topology (such as lookup data, machine learning models, etc.) within a topology jar file. One problem with this approach is that updating that data required the repackaging and redeployment of the topology. Another problem is that at times that data can be very large (gigabytes or more), which negatively impacts topology startup time.

 

Storm version 1.0 introduces a distributed cache API that allows for the sharing of files (BLOBs) among topologies. Files in the distributed cache can be updated at any time from the command line, without the need to redeploy a topology. The distributed cache API allows for files from several KB in size to several GB, and also supports compression formats such as ZIP and GZIP.

 

Storm 1.0 comes with two implementations of the distributed cache API: One backed by the local file system on Supervisor nodes, and one backed by Apache Hadoop HDFS. Both implementations also support fine-grained access control through ACLs.

 

HA Nimbus --Nimbus的高可用

Experienced Storm users will recognize that the Storm Nimbus service is not a single point of failure in the strictest sense (i.e. loss of the Nimbus node will not affect running topologies). However, the loss of the Nimbus node does degrade functionality for deploying new topologies and reassigning work across a cluster.

 

In Storm 1.0 this “soft” point of failure has been eliminated by supporting an HA Nimbus. Multiple instances of the Nimbus service run in a cluster and perform leader election when a Nimbus node fails, and Nimbus hosts can join or leave the cluster at any time. HA Nimbus leverages the distributed cache API for replication to guarantee the availability of topology resources in the event of a Nimbus node failure.

Storm之前的版本中,Nimbus节点存在单点失败的问题(Nimbus节点挂掉不会影响正在运行的拓扑),但是如果Nimbus节点不存在,用户不能提交新的拓扑,之前拓扑的任务也不能实现重新分配。 在Storm 1.0中,采用HA Nimbus来解决单点失败问题。在集群中运行多个Nimbus 服务实例,当Nimbus节点挂掉时,重新选举出新的Nimubs 节点,Nimbus主机可以随时加入或者离开集群。HA Nimbus通过采取分布式缓存API来实现数据的备份,保证拓扑资源的可用性。

 

Native Streaming Window API --- 原生本地流式窗口API

Window based computations are common among use cases in stream processing, where the unbounded stream of data is split into finite sets based on some criteria (e.g. time) and a computation is applied on each group of events. One example would be to compute the top trending twitter topic in the last hour.

 

Windowing is primarily used for aggregations, joins, pattern matching and more. Windows can be seen as an in-memory table where events are added and evicted based on some policies.

 

In past releases Storm relied on developers to build their own windowing logic. There were no recommended or high level abstractions that developers could use to define a Window in a standard way in a Topology.

 

Apache Storm 1.0 now includes a native windowing API. Windows can be specified with the following two parameters,

 

Window length - the length or duration of the window

Sliding interval - the interval at which the window slides

Storm has support for sliding and tumbling windows based on time duration and/or event count.

 

State Management - Statefule Bolts with Automatic Checkpointing

         ----状态管理-自动Checkpoint有状态Bolt

Storm 1.0 introduces a new Stateful Bolt API with automatic checkpointing. Stateful Bolts are easy to implement -- simply extend the BaseStatefulBolt class -- and can be combined with stateless bolts in a topology. Storm will automatically manage bolt state and recover that state in the event of a failure.

 

Storm 1.0 comes with a state implementations backed by memory as well as Redis. Future point releases will include additional support for alternative state stores.

 

Automatic Backpressure --自动反压机制

In previous Storm versions, the only way to throttle the input to a topology was to enable ACKing and set topology.max.spout.pending. For use cases that don't require at-least-once processing guarantees, this requirement imposed a significant performance penalty.

 

Storm 1.0 includes a new automatic backpressure mechanism based on configurable high/low watermarks expressed as a percentage of a task's buffer size. If the high water mark is reached, Storm will slow down the topology's spouts and stop throttling when the low water mark is reached.

 

Storm's backpressure mechanism is implemented independently of the Spout API, so all existing Spouts are supported.

之前的版本中,限制注入到拓扑的数据流量的方式是启用ACKing机制,并且设置topology.max.spout.pending参数。 当用例不需要实现at-least-once语义容错时,采用这种方式会极大的降低性能。 Storm 1.0引入了基于高/低水位的自动反压机制,这里的水位可通过Task的缓冲区大小来表示。当缓冲区达到高水位时,反压机制自动触发,降低Spout的数据注入速率,直到达到低水位为止。 Storm的反压机制和Spout API是独立的,所以所有已经存在的Spout都支持自动反压。

备注:生产案例,生产环境使用的是0.9.6版本,使用过程中发现worker非常占据内存,使用jmap命令转储JVM文件经过MAT工具分析发现0.9.6strom中使用DisruptorQueue占据内存,DisruptorQueue又是一ConcurrentLinkedQueue即消息进入太快,处理太慢导致消息挤压

 

 

Resource Aware Scheduler --资源感知调度器

Based on Storm pluggable topology scheduler API, Storm 1.0 adds a new scheduler implementation that takes into account both the memory (on-heap and off-heap) and CPU resources available in a cluster. The resources aware scheduler (AKA "RAS Scheduler") allows users to specify the memory and CPU requirements for individual topology components (Spouts/Bolts), and Storm will schedule topology tasks among workers to best meet those requirements.

 

In the future, the Storm community plans to extend the RAS implmentation to support network resources and rack awareness as well.

 

Dynamic Log Levels --动态日志等级

Storm 1.0 now allows users and administrators to dynamically change the log level settings for a running topology both from the Storm UI as well as the command line. Users can also specify an optional timeout after which those changes will be automatically reverted. The resulting log files are also easily searchable from the Storm UI and logviewer service.

 

Tuple Sampling and Debugging Tuple--采样和调试

In the course of debugging a topology, many Storm users find themselves adding "debug" bolts or Trident functions to log information about the data flowing through the topology, only to remove or disable them for production deployment. Storm 1.0 eliminates this need through the new Topology Debug capability.

 

Storm UI now includes a function that allow you to sample a percentage tuples flowing through a topology or individual component directly from the Storm UI. The sampled events can then be viewed directly from the Storm UI and are also saved to disk.

 

Distributed Log Search --分布式的日志查询

Another improvement to Storm's UI is the addition of a distributed log search. This search capability allows users to search across all log files of a specific topology, including archived (ZIP'ed) logs. The search results will include matches from all Supervisor nodes.

 

Dynamic Worker Profiling 动态Worker性能分析

The last, but certainly not the least, usability improvement in Storm 1.0 is dynamic worker profiling. This new feature allows users to request worker profile data directly from Storm UI, including:

Heap Dumps

JStack Output

JProfile Recordings

The generated files are then available for download for off-line analysis with various debugging tools. It is also now possible to restart workers from the Storm UI.

  • 大小: 45.4 KB
0
1
分享到:
评论

相关推荐

    kafka_2.11-0.10.1.0.tgz

    - **新消费者API**:0.10.1.0版本引入了新的消费者API,提供了更高级别的抽象,简化了消费者编程模型,支持自动分区平衡和幂等性写入。 - **幂等性生产者**:幂等性生产者确保即使在重试或网络故障后,消息也...

    jstorm生态

    其发展历程中,每一个新版本的发布都是对系统的进一步完善和性能的提升。目前,JStorm已经广泛应用于阿里集团的多个业务场景中,其架构设计上既有借鉴Apache Storm的成熟方案,又有根据实际需求所做出的创新和扩展。...

    hadoop2.X新特性介绍

    - **扩展性**:Hadoop1.0中的MapReduce版本(MRv1)在大规模集群部署时遇到瓶颈,例如集群的最大节点数限制为4000。 - **可用性**:JobTracker负载较高,且存在单点故障问题,一旦JobTracker发生故障,所有正在...

    《Hadoop大数据开发实战》教学教案—06Hadoop2.0新特性.pdf

    在大数据处理领域,Hadoop是一个不可或缺的开源框架,其发展历经多个版本,其中Hadoop2.0是重要的里程碑,它针对Hadoop1.0的一些关键问题进行了显著的改进。本章节我们将深入探讨Hadoop2.0的新特性,包括YARN资源...

    hadoop版本差异详解.doc

    a) **YARN**:YARN(Yet Another Resource Negotiator)是新一代的资源调度器,允许Hadoop集群运行多种应用程序和框架,如MapReduce、Tez和Storm。YARN的引入打破了原本仅限于MapReduce的局限性,使得Hadoop成为一个...

    Hadoop学习资料

    CDH至今共发布了四个版本,其中前两个版本已停止更新,最新两个版本CDH3和CDH4分别基于Apache Hadoop 0.20.2和2.0.0版本,对应Apache的Hadoop 1.0和2.0版本。 Hadoop生态圈由多个与Hadoop核心功能相关的项目组成,...

    Jstorm开源技术架构最佳实践.pdf

    这个开源项目以其强大的性能、稳定性以及不断创新的新特性,为大规模流处理提供了坚实的基础。 JStorm的发展历程中,关键里程碑包括Nimbus HA、Backpressure机制、Scheduler的多次升级以及对Apache Storm 0.10.x的...

    大数据培训教材

    Hadoop有多个版本,从最初的1.0版本发展到现在的Hadoop 2.0,不断改进并增加新的特性和改进性能。 NoSQL数据库是为了处理大数据而产生的数据库管理系统,与传统的SQL数据库相比,它们更适合处理大数据场景。NoSQL...

    SparkStreaming预研报告

    从版本1.0开始,文档不断增加新的内容,比如增加了容错性改进和零数据丢失的章节内容。这说明预研报告在编写过程中是动态发展的,不断吸纳新的信息和知识。 8. Spark Streaming容错的改进和零数据丢失 在容错性改进...

    hadoop技术

    Hadoop的版本衍化历史中,第一代版本(Hadoop 1.0)包含三个主要版本,即0.20.x、0.21.x和0.22.x,其中0.20.x最终演变成1.0.x的稳定版。第二代版本(Hadoop 2.0)包含两个版本,即0.23.x和2.x,其采用了全新的架构,...

    Flink 在易车落地应用与实践-Flink Forward Asia 2021.pdf

    面对Flink社区的快速发展,易车平台支持多个Flink版本,包括Flink 1.0、1.3、1.4等,以应对新功能特性的引入和任务迁移的需求。 总之,Flink在易车的落地应用展示了其在实时计算领域的强大能力,通过流批一体的架构...

    Hadoop大数据实战手册

    这些版本相比1.0进行了重大重构,引入了HDFS Federation和YARN等新特性,其中2.x还增加了NameNode HA和Wire-compatibility等重要功能。 - **社区与商业发行版**:Hadoop遵循Apache开源许可,允许用户自由使用和修改...

    Hadoop数据场景大加速

    - 2015年7月:推出了CRH 3.5版本,增加了新的特性和改进。 - 2016年3月:与OpenPower合作,推出了支持OpenPower平台的CRH 4.0版本。 #### 五、性能报告 RedHadoop与中太服务器合作后,在性能测试中取得了显著的...

    java开源包2

    Java Remote Desktop 是一个Java 的远程桌面软件,支持很多特性例如文件传输、数据压缩、颜色转换、键盘鼠标事件转换等等。 最短路径算法实现 k-shortest-paths 这是一个实现了 Yen 的排名算法的无环路径的项目 ...

    Java资源包01

    Java Remote Desktop 是一个Java 的远程桌面软件,支持很多特性例如文件传输、数据压缩、颜色转换、键盘鼠标事件转换等等。 最短路径算法实现 k-shortest-paths 这是一个实现了 Yen 的排名算法的无环路径的项目 ...

    java开源包1

    Java Remote Desktop 是一个Java 的远程桌面软件,支持很多特性例如文件传输、数据压缩、颜色转换、键盘鼠标事件转换等等。 最短路径算法实现 k-shortest-paths 这是一个实现了 Yen 的排名算法的无环路径的项目 ...

    java开源包11

    Java Remote Desktop 是一个Java 的远程桌面软件,支持很多特性例如文件传输、数据压缩、颜色转换、键盘鼠标事件转换等等。 最短路径算法实现 k-shortest-paths 这是一个实现了 Yen 的排名算法的无环路径的项目 ...

    java开源包3

    Java Remote Desktop 是一个Java 的远程桌面软件,支持很多特性例如文件传输、数据压缩、颜色转换、键盘鼠标事件转换等等。 最短路径算法实现 k-shortest-paths 这是一个实现了 Yen 的排名算法的无环路径的项目 ...

    java开源包6

    Java Remote Desktop 是一个Java 的远程桌面软件,支持很多特性例如文件传输、数据压缩、颜色转换、键盘鼠标事件转换等等。 最短路径算法实现 k-shortest-paths 这是一个实现了 Yen 的排名算法的无环路径的项目 ...

    java开源包5

    Java Remote Desktop 是一个Java 的远程桌面软件,支持很多特性例如文件传输、数据压缩、颜色转换、键盘鼠标事件转换等等。 最短路径算法实现 k-shortest-paths 这是一个实现了 Yen 的排名算法的无环路径的项目 ...

Global site tag (gtag.js) - Google Analytics