`
xinklabi
  • 浏览: 1591073 次
  • 性别: Icon_minigender_1
  • 来自: 吉林
文章分类
社区版块
存档分类
最新评论

RSA加密原理

阅读更多

http://blog.csdn.net/q376420785/article/details/8557266

http://www.ruanyifeng.com/blog/2013/07/rsa_algorithm_part_two.html

http://blog.csdn.net/sunmenggmail/article/details/11994013

 

 

 

以前也接触过RSA加密算法,感觉这个东西太神秘了,是数学家的事,和我无关。但是,看了很多关于RSA加密算法原理的资料之后,我发现其实原理并不是我们想象中那么复杂,弄懂之后发现原来就只是这样而已..

  学过算法的朋友都知道,计算机中的算法其实就是数学运算。所以,再讲解RSA加密算法之前,有必要了解一下一些必备的数学知识。我们就从数学知识开始讲解。

必备数学知识

  RSA加密算法中,只用到素数、互质数、指数运算、模运算等几个简单的数学知识。所以,我们也需要了解这几个概念即可。

素数

  素数又称质数,指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。这个概念,我们在上初中,甚至小学的时候都学过了,这里就不再过多解释了。

互质数

  百度百科上的解释是:公因数只有1的两个数,叫做互质数。;维基百科上的解释是:互质,又称互素。若N个整数的最大公因子是1,则称这N个整数互质。

  常见的互质数判断方法主要有以下几种:

  1. 两个不同的质数一定是互质数。例如,2与7、13与19。
  2. 一个质数,另一个不为它的倍数,这两个数为互质数。例如,3与10、5与 26。
  3. 相邻的两个自然数是互质数。如 15与 16。
  4. 相邻的两个奇数是互质数。如 49与 51。
  5. 较大数是质数的两个数是互质数。如97与88。
  6. 小数是质数,大数不是小数的倍数的两个数是互质数。例如 7和 16。
  7. 2和任何奇数是互质数。例如2和87。
  8. 1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。
  9. 辗转相除法。

指数运算

  指数运算又称乘方计算,计算结果称为幂。nm指将n自乘m次。把nm看作乘方的结果,叫做”n的m次幂”或”n的m次方”。其中,n称为“底数”,m称为“指数”。

模运算

  模运算即求余运算。“模”是“Mod”的音译。和模运算紧密相关的一个概念是“同余”。数学上,当两个整数除以同一个整数,若得相同余数,则二整数同余

  两个整数a,b,若它们除以正整数m所得的余数相等,则称a,b对于模m同余,记作: a ≡ b (mod m);读作:a同余于bm,或者,ab关于模m同余。例如:26 ≡ 14 (mod 12)。

RSA加密算法

RSA加密算法简史

  RSA是1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的。当时他们三人都在麻省理工学院工作。RSA就是他们三人姓氏开头字母拼在一起组成的。

公钥与密钥的产生

  假设Alice想要通过一个不可靠的媒体接收Bob的一条私人讯息。她可以用以下的方式来产生一个公钥和一个私钥

  1. 随意选择两个大的质数pqp不等于q,计算N=pq
  2. 根据欧拉函数,求得r = (p-1)(q-1)
  3. 选择一个小于 r 的整数 e,求得 e 关于模 r 的模反元素,命名为d。(模反元素存在,当且仅当e与r互质)
  4.  p  q 的记录销毁。

(N,e)是公钥,(N,d)是私钥。Alice将她的公钥(N,e)传给Bob,而将她的私钥(N,d)藏起来。

加密消息

  假设Bob想给Alice送一个消息m,他知道Alice产生的Ne。他使用起先与Alice约好的格式将m转换为一个小于N的整数n,比如他可以将每一个字转换为这个字的Unicode码,然后将这些数字连在一起组成一个数字。假如他的信息非常长的话,他可以将这个信息分为几段,然后将每一段转换为n。用下面这个公式他可以将n加密为c

  ne ≡ c (mod N)

计算c并不复杂。Bob算出c后就可以将它传递给Alice。

解密消息

Alice得到Bob的消息c后就可以利用她的密钥d来解码。她可以用以下这个公式来将c转换为n

  cd ≡ n (mod N)

得到n后,她可以将原来的信息m重新复原。

解码的原理是:

  cd ≡ n e·d(mod N)

以及ed ≡ 1 (mod p-1)和ed ≡ 1 (mod q-1)。由费马小定理可证明(因为pq是质数)

  n e·d ≡ n (mod p)   和  n e·d ≡ n (mod q)

这说明(因为pq不同的质数,所以pq互质)

  n e·d ≡ n (mod pq)

签名消息

  RSA也可以用来为一个消息署名。假如甲想给乙传递一个署名的消息的话,那么她可以为她的消息计算一个散列值(Message digest),然后用她的密钥(private key)加密这个散列值并将这个“署名”加在消息的后面。这个消息只有用她的公钥才能被解密。乙获得这个消息后可以用甲的公钥解密这个散列值,然后将这个数据与他自己为这个消息计算的散列值相比较。假如两者相符的话,那么他就可以知道发信人持有甲的密钥,以及这个消息在传播路径上没有被篡改过。

编程实践

  下面,开始我们的重点环节:编程实践。在开始编程前,我们通过计算,来确定公钥和密钥。

计算公钥和密钥
  1. 假设p = 3、q = 11(p,q都是素数即可。),则N = pq = 33;
  2. r = (p-1)(q-1) = (3-1)(11-1) = 20;
  3. 根据模反元素的计算公式,我们可以得出,e·d ≡ 1 (mod 20),即e·d = 20n+1 (n为正整数);我们假设n=1,则e·d = 21。e、d为正整数,并且e与r互质,则e = 3,d = 7。(两个数交换一下也可以。)

  到这里,公钥和密钥已经确定。公钥为(N, e) = (33, 3),密钥为(N, d) = (33, 7)。

 

编程实现

 

  下面我们使用Java来实现一下加密和解密的过程。具体代码如下:

RSA算法实现:

[java] view plaincopy
 
 
  1. <span style="font-size:14px;">package security.rsa;  
  2.   
  3. public class RSA {  
  4.       
  5.     /** 
  6.      *  加密、解密算法 
  7.      * @param key 公钥或密钥 
  8.      * @param message 数据 
  9.      * @return 
  10.      */  
  11.     public static long rsa(int baseNum, int key, long message){  
  12.         if(baseNum < 1 || key < 1){  
  13.             return 0L;  
  14.         }  
  15.         //加密或者解密之后的数据  
  16.         long rsaMessage = 0L;  
  17.           
  18.         //加密核心算法  
  19.         rsaMessage = Math.round(Math.pow(message, key)) % baseNum;  
  20.         return rsaMessage;  
  21.     }  
  22.       
  23.       
  24.       
  25.     public static void main(String[] args){  
  26.         //基数  
  27.         int baseNum = 3 * 11;  
  28.         //公钥  
  29.         int keyE = 3;  
  30.         //密钥  
  31.         int keyD = 7;  
  32.         //未加密的数据  
  33.         long msg = 24L;  
  34.         //加密后的数据  
  35.         long encodeMsg = rsa(baseNum, keyE, msg);  
  36.         //解密后的数据  
  37.         long decodeMsg = rsa(baseNum, keyD, encodeMsg);  
  38.           
  39.         System.out.println("加密前:" + msg);  
  40.         System.out.println("加密后:" + encodeMsg);  
  41.         System.out.println("解密后:" + decodeMsg);  
  42.           
  43.     }  
  44.     </span>  
  45.       
  46. }  

RSA算法结果:

加密前:24
加密后:30
解密后:24

(看程序最清楚了,对于要加密的数字m, m^e%N=c, c就是加密之后的密文。c^d%N=m, 就能解密得到m)

 

RSA加密算法的安全性

 

  当p和q是一个大素数的时候,从它们的积pq去分解因子p和q,这是一个公认的数学难题。然而,虽然RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。

  1994年彼得·秀尔(Peter Shor)证明一台量子计算机可以在多项式时间内进行因数分解。假如量子计算机有朝一日可以成为一种可行的技术的话,那么秀尔的算法可以淘汰RSA和相关的衍生算法。(即依赖于分解大整数困难性的加密算法)

  另外,假如N的长度小于或等于256,那么用一台个人电脑在几个小时内就可以分解它的因子了。1999年,数百台电脑合作分解了一个512位长的N。1997年后开发的系统,用户应使用1024位密钥,证书认证机构应用2048位或以上。

RSA加密算法的缺点

  虽然RSA加密算法作为目前最优秀的公钥方案之一,在发表三十多年的时间里,经历了各种攻击的考验,逐渐为人们接受。但是,也不是说RSA没有任何缺点。由于没有从理论上证明破译RSA的难度与大数分解难度的等价性。所以,RSA的重大缺陷是无法从理论上把握它的保密性能如何。在实践上,RSA也有一些缺点:

  1. 产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密;
  2. 分组长度太大,为保证安全性,n 至少也要 600 bits 以上,使运算代价很高,尤其是速度较慢,。

 

---------------------------------------------------------------------------------------------------------------------------------

 

http://blog.jobbole.com/42699/

 

文章 – 伯乐在线
 
 
 
 
 

RSA算法原理


RSA算法原理

如果你问我,哪一种算法最重要?我可能会回答“公钥加密算法”。因为它是计算机通信安全的基石,保证了加密数据不会被破解。你可以想象一下,信用卡交易被破解的后果。

进入正题之前,我先简单介绍一下,什么是”公钥加密算法”。

一、一点历史

1976年以前,所有的加密方法都是同一种模式:

(1)甲方选择某一种加密规则,对信息进行加密;

(2)乙方使用同一种规则,对信息进行解密。

由于加密和解密使用同样规则(简称”密钥”),这被称为“对称加密算法”(Symmetric-key algorithm)。

这种加密模式有一个最大弱点:甲方必须把加密规则告诉乙方,否则无法解密。保存和传递密钥,就成了最头疼的问题。

RSA算法原理

1976年,两位美国计算机学家Whitfield Diffie 和 Martin Hellman,提出了一种崭新构思,可以在不直接传递密钥的情况下,完成解密。这被称为“Diffie-Hellman密钥交换算法”。这个算法启发了其他科学家。人们认识到,加密和解密可以使用不同的规则,只要这两种规则之间存在某种对应关系即可,这样就避免了直接传递密钥。

这种新的加密模式被称为”非对称加密算法”。

(1)乙方生成两把密钥(公钥和私钥)。公钥是公开的,任何人都可以获得,私钥则是保密的。

(2)甲方获取乙方的公钥,然后用它对信息加密。

(3)乙方得到加密后的信息,用私钥解密。

如果公钥加密的信息只有私钥解得开,那么只要私钥不泄漏,通信就是安全的。

RSA算法原理

1977年,三位数学家Rivest、Shamir 和 Adleman 设计了一种算法,可以实现非对称加密。这种算法用他们三个人的名字命名,叫做RSA算法。从那时直到现在,RSA算法一直是最广为使用的”非对称加密算法”。毫不夸张地说,只要有计算机网络的地方,就有RSA算法。

这种算法非常可靠,密钥越长,它就越难破解。根据已经披露的文献,目前被破解的最长RSA密钥是768个二进制位。也就是说,长度超过768位的密钥,还无法破解(至少没人公开宣布)。因此可以认为,1024位的RSA密钥基本安全,2048位的密钥极其安全。

下面,我就进入正题,解释RSA算法的原理。文章共分成两部分,今天是第一部分,介绍要用到的四个数学概念。你可以看到,RSA算法并不难,只需要一点数论知识就可以理解。

二、互质关系

如果两个正整数,除了1以外,没有其他公因子,我们就称这两个数是互质关系(coprime)。比如,15和32没有公因子,所以它们是互质关系。这说明,不是质数也可以构成互质关系。

关于互质关系,不难得到以下结论:

1. 任意两个质数构成互质关系,比如13和61。

2. 一个数是质数,另一个数只要不是前者的倍数,两者就构成互质关系,比如3和10。

3. 如果两个数之中,较大的那个数是质数,则两者构成互质关系,比如97和57。

4. 1和任意一个自然数是都是互质关系,比如1和99。

5. p是大于1的整数,则p和p-1构成互质关系,比如57和56。

6. p是大于1的奇数,则p和p-2构成互质关系,比如17和15。

三、欧拉函数

请思考以下问题:

任意给定正整数n,请问在小于等于n的正整数之中,有多少个与n构成互质关系?(比如,在1到8之中,有多少个数与8构成互质关系?)

计算这个值的方法就叫做欧拉函数,以φ(n)表示。在1到8之中,与8形成互质关系的是1、3、5、7,所以 φ(n) = 4。

φ(n) 的计算方法并不复杂,但是为了得到最后那个公式,需要一步步讨论。

第一种情况

如果n=1,则 φ(1) = 1 。因为1与任何数(包括自身)都构成互质关系。

第二种情况

如果n是质数,则 φ(n)=n-1 。因为质数与小于它的每一个数,都构成互质关系。比如5与1、2、3、4都构成互质关系。

第三种情况

如果n是质数的某一个次方,即 n = p^k (p为质数,k为大于等于1的整数),则

RSA算法原理

比如 φ(8) = φ(2^3) =2^3 – 2^2 = 8 -4 = 4。

这是因为只有当一个数不包含质数p,才可能与n互质。而包含质数p的数一共有p^(k-1)个,即1×p、2×p、3×p、…、p^(k-1)×p,把它们去除,剩下的就是与n互质的数。

上面的式子还可以写成下面的形式:

RSA算法原理

可以看出,上面的第二种情况是 k=1 时的特例。

第四种情况

如果n可以分解成两个互质的整数之积,

  n = p1 × p2

  φ(n) = φ(p1p2) = φ(p1)φ(p2)

即积的欧拉函数等于各个因子的欧拉函数之积。比如,φ(56)=φ(8×7)=φ(8)×φ(7)=4×6=24。

这一条的证明要用到“中国剩余定理”,这里就不展开了,只简单说一下思路:如果a与p1互质(a<p1),b与p2互质(b<p2),c与p1p2互质(c<p1p2),则c与数对 (a,b) 是一一对应关系。由于a的值有φ(p1)种可能,b的值有φ(p2)种可能,则数对 (a,b) 有φ(p1)φ(p2)种可能,而c的值有φ(p1p2)种可能,所以φ(p1p2)就等于φ(p1)φ(p2)。

第五种情况

因为任意一个大于1的正整数,都可以写成一系列质数的积。

RSA算法原理

根据第4条的结论,得到

RSA算法原理

再根据第3条的结论,得到

RSA算法原理

也就等于

RSA算法原理

这就是欧拉函数的通用计算公式。比如,1323的欧拉函数,计算过程如下:

RSA算法原理

四、欧拉定理

欧拉函数的用处,在于欧拉定理。”欧拉定理”指的是:

如果两个正整数a和n互质,则n的欧拉函数 φ(n) 可以让下面的等式成立:

RSA算法原理

也就是说,a的φ(n)次方被n除的余数为1。或者说,a的φ(n)次方减去1,可以被n整除。比如,3和7互质,而7的欧拉函数φ(7)等于6,所以3的6次方(729)减去1,可以被7整除(728/7=104)。

欧拉定理的证明比较复杂,这里就省略了。我们只要记住它的结论就行了。

欧拉定理可以大大简化某些运算。比如,7和10互质,根据欧拉定理,

RSA算法原理

已知 φ(10) 等于4,所以马上得到7的4倍数次方的个位数肯定是1。

RSA算法原理

因此,7的任意次方的个位数(例如7的222次方),心算就可以算出来。

欧拉定理有一个特殊情况。

假设正整数a与质数p互质,因为质数p的φ(p)等于p-1,则欧拉定理可以写成

RSA算法原理

这就是著名的费马小定理。它是欧拉定理的特例。

欧拉定理是RSA算法的核心。理解了这个定理,就可以理解RSA。

五、模反元素

还剩下最后一个概念:

如果两个正整数a和n互质,那么一定可以找到整数b,使得 ab-1 被n整除,或者说ab被n除的余数是1。

RSA算法原理

这时,b就叫做a的“模反元素”

比如,3和11互质,那么3的模反元素就是4,因为 (3 × 4)-1 可以被11整除。显然,模反元素不止一个, 4加减11的整数倍都是3的模反元素 {…,-18,-7,4,15,26,…},即如果b是a的模反元素,则 b+kn 都是a的模反元素。

欧拉定理可以用来证明模反元素必然存在。

RSA算法原理

可以看到,a的 φ(n)-1 次方,就是a的模反元素。

==========================================

好了,需要用到的数学工具,全部介绍完了。RSA算法涉及的数学知识,就是上面这些,下一次我就来介绍公钥和私钥到底是怎么生成的。

有了这些知识,我们就可以看懂RSA算法。这是目前地球上最重要的加密算法。

RSA算法原理

六、密钥生成的步骤

我们通过一个例子,来理解RSA算法。假设爱丽丝要与鲍勃进行加密通信,她该怎么生成公钥和私钥呢?

RSA算法原理

第一步,随机选择两个不相等的质数p和q。

爱丽丝选择了61和53。(实际应用中,这两个质数越大,就越难破解。)

第二步,计算p和q的乘积n。

爱丽丝就把61和53相乘。

  n = 61×53 = 3233

n的长度就是密钥长度。3233写成二进制是110010100001,一共有12位,所以这个密钥就是12位。实际应用中,RSA密钥一般是1024位,重要场合则为2048位。

第三步,计算n的欧拉函数φ(n)。

根据公式:

  φ(n) = (p-1)(q-1)

爱丽丝算出φ(3233)等于60×52,即3120。

第四步,随机选择一个整数e,条件是1< e < φ(n),且e与φ(n) 互质。

爱丽丝就在1到3120之间,随机选择了17。(实际应用中,常常选择65537。)

第五步,计算e对于φ(n)的模反元素d。

所谓“模反元素”就是指有一个整数d,可以使得ed被φ(n)除的余数为1。

  ed ≡ 1 (mod φ(n))

这个式子等价于

  ed – 1 = kφ(n)

于是,找到模反元素d,实质上就是对下面这个二元一次方程求解。

  ex + φ(n)y = 1

已知 e=17, φ(n)=3120,

  17x + 3120y = 1

这个方程可以用“扩展欧几里得算法”求解,此处省略具体过程。总之,爱丽丝算出一组整数解为 (x,y)=(2753,-15),即 d=2753。

至此所有计算完成。

第六步,将n和e封装成公钥,n和d封装成私钥。

在爱丽丝的例子中,n=3233,e=17,d=2753,所以公钥就是 (3233,17),私钥就是(3233, 2753)。

实际应用中,公钥和私钥的数据都采用ASN.1格式表达(实例)。

七、RSA算法的可靠性

回顾上面的密钥生成步骤,一共出现六个数字:

p
q
n
φ(n)
e
d

这六个数字之中,公钥用到了两个(n和e),其余四个数字都是不公开的。其中最关键的是d,因为n和d组成了私钥,一旦d泄漏,就等于私钥泄漏。

那么,有无可能在已知n和e的情况下,推导出d?

(1)ed≡1 (mod φ(n))。只有知道e和φ(n),才能算出d。

(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。

(3)n=pq。只有将n因数分解,才能算出p和q。

结论:如果n可以被因数分解,d就可以算出,也就意味着私钥被破解。

可是,大整数的因数分解,是一件非常困难的事情。目前,除了暴力破解,还没有发现别的有效方法。维基百科这样写道:

“对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。

假如有人找到一种快速因数分解的算法,那么RSA的可靠性就会极度下降。但找到这样的算法的可能性是非常小的。今天只有短的RSA密钥才可能被暴力破解。到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式。

只要密钥长度足够长,用RSA加密的信息实际上是不能被解破的。”

举例来说,你可以对3233进行因数分解(61×53),但是你没法对下面这个整数进行因数分解。

12301866845301177551304949
58384962720772853569595334
79219732245215172640050726
36575187452021997864693899
56474942774063845925192557
32630345373154826850791702
61221429134616704292143116
02221240479274737794080665
351419597459856902143413

它等于这样两个质数的乘积:

33478071698956898786044169
84821269081770479498371376
85689124313889828837938780
02287614711652531743087737
814467999489
×
36746043666799590428244633
79962795263227915816434308
76426760322838157396665112
79233373417143396810270092
798736308917

事实上,这大概是人类已经分解的最大整数(232个十进制位,768个二进制位)。比它更大的因数分解,还没有被报道过,因此目前被破解的最长RSA密钥就是768位。

八、加密和解密

有了公钥和密钥,就能进行加密和解密了。

(1)加密要用公钥 (n,e)

假设鲍勃要向爱丽丝发送加密信息m,他就要用爱丽丝的公钥 (n,e) 对m进行加密。这里需要注意,m必须是整数(字符串可以取ascii值或unicode值),且m必须小于n。

所谓”加密”,就是算出下式的c:

  me ≡ c (mod n)

爱丽丝的公钥是 (3233, 17),鲍勃的m假设是65,那么可以算出下面的等式:

  6517 ≡ 2790 (mod 3233)

于是,c等于2790,鲍勃就把2790发给了爱丽丝。

(2)解密要用私钥(n,d)

爱丽丝拿到鲍勃发来的2790以后,就用自己的私钥(3233, 2753) 进行解密。可以证明,下面的等式一定成立:

  cd ≡ m (mod n)

也就是说,c的d次方除以n的余数为m。现在,c等于2790,私钥是(3233, 2753),那么,爱丽丝算出

  27902753 ≡ 65 (mod 3233)

因此,爱丽丝知道了鲍勃加密前的原文就是65。

至此,”加密–解密”的整个过程全部完成。

我们可以看到,如果不知道d,就没有办法从c求出m。而前面已经说过,要知道d就必须分解n,这是极难做到的,所以RSA算法保证了通信安全。

你可能会问,公钥(n,e) 只能加密小于n的整数m,那么如果要加密大于n的整数,该怎么办?有两种解决方法:一种是把长信息分割成若干段短消息,每段分别加密;另一种是先选择一种”对称性加密算法”(比如DES),用这种算法的密钥加密信息,再用RSA公钥加密DES密钥。

九、私钥解密的证明

最后,我们来证明,为什么用私钥解密,一定可以正确地得到m。也就是证明下面这个式子:

  cd ≡ m (mod n)

因为,根据加密规则

  me ≡ c (mod n)

于是,c可以写成下面的形式:

  c = me – kn

将c代入要我们要证明的那个解密规则:

  (me – kn)d ≡ m (mod n)

它等同于求证

  med ≡ m (mod n)

由于

  ed ≡ 1 (mod φ(n))

所以

  ed = hφ(n)+1

将ed代入:

  mhφ(n)+1 ≡ m (mod n)

接下来,分成两种情况证明上面这个式子。

(1)m与n互质。

根据欧拉定理,此时

  mφ(n) ≡ 1 (mod n)

得到

  (mφ(n))h × m ≡ m (mod n)

原式得到证明。

(2)m与n不是互质关系。

此时,由于n等于质数p和q的乘积,所以m必然等于kp或kq。

以 m = kp为例,考虑到这时k与q必然互质,则根据欧拉定理,下面的式子成立:

  (kp)q-1 ≡ 1 (mod q)

进一步得到

  [(kp)q-1]h(p-1) × kp ≡ kp (mod q)

  (kp)ed ≡ kp (mod q)

将它改写成下面的等式

  (kp)ed = tq + kp

这时t必然能被p整除,即 t=t’p

  (kp)ed = t’pq + kp

因为 m=kp,n=pq,所以

  med ≡ m (mod n)

原式得到证明。

分享到:
评论

相关推荐

    RSA加密原理1

    RSA加密原理详解 RSA是一种非对称加密算法,它的核心在于使用一对密钥,即公钥和私钥,来进行加密和解密。在RSA中,公钥是公开的,任何人都可以获取并用于加密数据,而私钥是保密的,只有拥有者才能用于解密数据。...

    IOS RSA加密 分段解密

    1. **RSA加密原理**:RSA算法基于欧拉定理和费马小定理,通过选取两个大素数p和q生成一个大合数n(即p*q),然后计算φ(n)=(p-1)*(q-1),选择一个与φ(n)互质的整数e作为公钥的指数,最后计算d作为私钥的指数,使得e...

    RSA算法的基本加密原理

    ### RSA算法的基本加密原理 #### 一、引言 RSA算法是现代密码学中的一个基石,它是由Ron Rivest、Adi Shamir和Leonard Adleman三位科学家于1978年共同提出的。RSA算法是一种非对称加密算法,即加密和解密使用的...

    RSA加密/解密实验

    实验目的主要是让学生理解RSA加密原理并能实际操作,通过编写程序来实现RSA加密和解密过程。同时,实验还包括对一个磁盘文本文件进行加密和解密的实际应用,以检验算法的可行性。 实验内容虽然提及了AES加密/解密,...

    rsa加密解密js文件

    1. RSA加密原理: RSA的核心在于两个大素数p和q的乘积n=p*q,以及欧拉函数φ(n)=(p-1)*(q-1)。选择一个与φ(n)互质的整数e作为公钥的指数,然后计算e对于φ(n)的模逆d作为私钥的指数。加密时,明文m通过指数运算m^e...

    rsa.zip_QT RSA加密算法_Qt rsa加密_qt rsa加密步骤_rsa_rsa算法 qt

    在本项目中,"rsa.zip_QT RSA加密算法_Qt rsa加密_qt rsa加密步骤_rsa_rsa算法 qt",开发者已经实现了RSA加密算法,并结合Qt创建了一个具有图形界面的应用,使得加密过程更为直观易用。 首先,我们来深入理解RSA...

    RSA.rar_RSA 加密解密_rsa_rsa 标准_rsa加密解密_什么是RSA编码

    至于"什么是RSA编码",这可能是对RSA加密原理的简单解释,包括如何生成密钥对,如何进行加密和解密操作。在压缩包内的"RSA"文件中,可能包含了更深入的理论介绍,或者提供了具体的编程示例,如Python、Java等编程...

    RSA加密解密工具,用于文件的加密和解密* RSA加密解密:私钥解密,公钥加密

    RSA算法是一种非对称加密算法,由Ron Rivest、Adi Shamir和Leonard Adleman在1977年提出,是目前广泛应用于网络安全领域的一种核心...同时,了解RSA加密的基本原理和操作流程,也有助于提升用户的信息安全意识和技能。

    RSA加密算法在VB中的实现.rar_RSA VB_VB RSA_rsa加密算法_vb rsa_vb 加密

    总之,通过VB实现RSA加密算法,不仅能够加深对加密原理的理解,还能够将理论知识转化为实际应用,这对于IT从业者来说是非常宝贵的经验。同时,不断学习和掌握新的加密技术和安全实践,对于应对日益复杂的网络安全...

    cpp-SwiftRSACrypto封装MIHCryptoSwift版本的RSA加密解密工具类

    本文将深入探讨这个工具类的核心功能、使用方法以及背后的RSA加密原理。 一、RSA加密算法简介 RSA是一种非对称加密算法,由Rivest、Shamir和Adleman三位科学家于1977年提出。该算法基于大数因子分解的困难性,分为...

    android和 ios 与java web服务器端的rsa 加密解密

    1. **RSA加密原理**: RSA基于大数因子分解的困难性。每一对公钥和私钥由两个大的质数相乘得到。公钥可公开,任何人都可以使用它来加密消息;而私钥必须保密,用于解密接收到的加密信息。 2. **Android与Java Web...

    RSA加密JAVA实现

    RSA 加密原理 RSA 加密算法基于大数分解的困难性,利用两个大素数的乘积来生成公钥和私钥。加密过程中,明文被转换为数字,使用公钥对其进行加密,得到密文。解密过程中,使用私钥对密文进行解密,恢复明文。 RSA ...

    RSA加密算法实验报告.pdf

    本实验报告主要介绍了RSA加密算法的实现和原理,包括密钥对的产生、加密和解密过程、数字签名等。下面是该实验报告的详细知识点总结: 一、RSA加密算法的原理 RSA加密算法是基于大数分解问题的安全性,公钥和私钥...

    java js RSA加密支持超长加密

    RSA加密是一种非对称加密算法,它基于两个不同的密钥:公钥和私钥。在Java和JavaScript中实现RSA加密,对于处理较长的数据至关重要,因为这两种语言的标准库默认的RSA加密只能处理相对较小的块。这里我们将深入探讨...

    C# RSA加密解密

    **C# RSA加密解密详解** 在信息安全领域,加密技术是一种至关重要的手段,用于保护数据的隐私和安全性。RSA(Rivest-Shamir-Adleman)算法是一种非对称加密算法,广泛应用于网络通信、数据存储等领域。C#作为.NET...

    表单RSA加密实例+Struts2

    **RSA加密技术** RSA(Rivest-Shamir-Adleman)是一种非对称加密算法,它在信息安全领域有着广泛的应用,特别是在...通过学习和实践这个项目,开发者可以更好地理解RSA加密原理以及如何在实际Web应用中实施加密策略。

    RSA.rar_rsa_rsa visual basic_rsa 加密_visual basic rsa_加密算法

    1. **RSA加密原理**: RSA算法基于数学问题——大整数因子分解。它生成一对密钥:公钥和私钥。公钥可公开,用于加密数据;私钥则必须保密,用于解密数据。加密过程是通过将明文数据与公钥进行模指数运算;解密则是...

    RSA加密示例

    RSA加密算法是信息安全领域的重要组成部分,其基于数学原理的非对称加密方式为数据传输和网络安全提供了坚实的保障。尽管该算法在信息安全领域应用广泛,但对于初学者而言,复杂的代码和抽象的数学概念往往构成理解...

    unity工具类RSA加密和解密

    首先,RSA加密的核心原理是基于大整数因子分解的困难性。它生成一对密钥:公钥和私钥。公钥可以公开,用于加密;而私钥必须保密,用于解密。加密过程是用公钥对数据进行操作,解密则是用私钥来还原原始数据。RSA的...

Global site tag (gtag.js) - Google Analytics