1 sha加密:
安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准(Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA)。对于长度小于2^64位的消息,SHA1会产生一个160位的消息摘要。该算法经过加密专家多年来的发展和改进已日益完善,并被广泛使用。该算法的思想是接收一段明文,然后以一种不可逆的方式将它转换成一段(通常更小)密文,也可以简单的理解为取一串输入码(称为预映射或信息),并把它们转化为长度较短、位数固定的输出序列即散列值(也称为信息摘要或信息认证代码)的过程。散列函数值可以说是对明文的一种“指纹”或是“摘要”所以对散列值的数字签名就可以视为对此明文的数字签名。
散列算法
原理
SHA-1与MD5的比较
JAVA 已经实现了 SHA-256 和 SHA-512 两种 Hash 算法
利用 java.security.MessageDigest 调用已经集成的 Hash 算法
创建 Encrypt 对象,并调用 SHA256 或者 SHA512 并传入要加密的文本信息,分别得到 SHA-256 或 SHA-512 两种被加密的 hash 串。
若要改为 MD5 算法,修改传入参数 strType 为 "MD5" 即可得到 MD5 加密功能。
/** * @file Encrypt.java * @date 2016年8月5日 * @version 3.4.1 * * Copyright (c) 2013 Sihua Tech, Inc. All Rights Reserved. */ package encrypt; /** * * * @author chengjian.he * @version 3.4, 2016年8月5日 上午10:05:37 * @since */ import java.security.MessageDigest; import java.security.NoSuchAlgorithmException; public class Encrypt { /** * 传入文本内容,返回 SHA-256 串 * * @param strText * @return */ public String SHA256(final String strText) { return SHA(strText, "SHA-256"); } /** * 传入文本内容,返回 SHA-512 串 * * @param strText * @return */ public String SHA512(final String strText) { return SHA(strText, "SHA-512"); } /** * 字符串 SHA 加密 * * @param strSourceText * @return */ private String SHA(final String strText, final String strType) { // 返回值 String strResult = null; // 是否是有效字符串 if (strText != null && strText.length() > 0) { try { // SHA 加密开始 // 创建加密对象 并传入加密类型 MessageDigest messageDigest = MessageDigest.getInstance(strType); // 传入要加密的字符串 messageDigest.update(strText.getBytes()); // 得到 byte 类型结果 byte byteBuffer[] = messageDigest.digest(); // 将 byte 转换为 string StringBuffer strHexString = new StringBuffer(); // 遍历 byte buffer for (int i = 0; i < byteBuffer.length; i++) { String hex = Integer.toHexString(0xff & byteBuffer[i]); if (hex.length() == 1) { strHexString.append('0'); } strHexString.append(hex); } // 得到返回结果 strResult = strHexString.toString(); } catch (NoSuchAlgorithmException e) { e.printStackTrace(); } } return strResult; } public static void main(String args[]){ Encrypt ey = new Encrypt(); System.out.println(ey.SHA("ILoveYou", "MD5"));//62accaf23ac9a73c0b28765b7dfaf75a } }
2 Base64
Base64是网络上最常见的用于传输8Bit字节代码的编码方式之一,大家可以查看RFC2045~RFC2049,上面有MIME的详细规范。Base64编码可用于在HTTP环境下传递较长的标识信息。例如,在Java Persistence系统Hibernate中,就采用了Base64来将一个较长的唯一标识符(一般为128-bit的UUID)编码为一个字符串,用作HTTP表单和HTTP GET URL中的参数。在其他应用程序中,也常常需要把二进制数据编码为适合放在URL(包括隐藏表单域)中的形式。此时,采用Base64编码具有不可读性,即所编码的数据不会被人用肉眼所直接看到。
/** * @file Base64.java * @date 2016年8月5日 * @version 3.4.1 * * Copyright (c) 2013 Sihua Tech, Inc. All Rights Reserved. */ package encrypt; import java.io.UnsupportedEncodingException; import Decoder.BASE64Decoder; import Decoder.BASE64Encoder; /** * * * @author chengjian.he * @version 3.4, 2016年8月5日 上午10:32:23 * @since Yeexun 3.4 */ public class Base64 { // 加密 public String getBase64(String str) { byte[] b = null; String s = null; try { b = str.getBytes("utf-8"); } catch (UnsupportedEncodingException e) { e.printStackTrace(); } if (b != null) { s = new BASE64Encoder().encode(b); } return s; } // 解密 public String getFromBase64(String s) { byte[] b = null; String result = null; if (s != null) { BASE64Decoder decoder = new BASE64Decoder(); try { b = decoder.decodeBuffer(s); result = new String(b, "utf-8"); } catch (Exception e) { e.printStackTrace(); } } return result; } public static void main(String args[]){ Base64 b6 = new Base64(); System.out.println(b6.getBase64("ILoveYou")); System.out.println(b6.getFromBase64(b6.getBase64("ILoveYou"))); } }
SUxvdmVZb3U= ILoveYou
3 Base64Encoder
一直以来Base64的加密解密都是使用sun.misc包下的BASE64Encoder及BASE64Decoder的sun.misc.BASE64Encoder/BASE64Decoder类。这人个类是sun公司的内部方法,并没有在java api中公开过,不属于JDK标准库范畴,但在JDK中包含了该类,可以直接使用。
/** * @file Base64Encoder.java * @date 2016年8月5日 * @version 3.4.1 * * Copyright (c) 2013 Sihua Tech, Inc. All Rights Reserved. */ package encrypt; /** * * * @author chengjian.he * @version 3.4, 2016年8月5日 上午10:44:22 * @since Yeexun 3.4 */ public class Base64Encoder { public static String getBASE64(String s) { if (s == null) return null; return (new sun.misc.BASE64Encoder()).encode(s.getBytes()); } // 将 BASE64 编码的字符串 s 进行解码 解密 public static String getFromBASE64(String s) { if (s == null) return null; sun.misc.BASE64Decoder decoder = new sun.misc.BASE64Decoder(); try { byte[] b = decoder.decodeBuffer(s); return new String(b); } catch (Exception e) { return null; } } public static String mTOa(Object ming){ return Base64Encoder.getBASE64(Base64Encoder.getBASE64(Base64Encoder.getBASE64((String)ming))); } public static String aTOm(String an){ return Base64Encoder.getFromBASE64(Base64Encoder.getFromBASE64(Base64Encoder.getFromBASE64(an))); } public static void main(String[] args) { String a = mTOa("100000.89".toString()); System.out.println(a);//加密 System.out.println(aTOm(a));//解密 } }
4 RSA
缺点
编辑/** * @file RSATool.java * @date 2016年8月5日 * @version 3.4.1 * * Copyright (c) 2013 Sihua Tech, Inc. All Rights Reserved. */ package encrypt; /** * * * @author chengjian.he * @version 3.4, 2016年8月5日 上午10:51:35 * @since Yeexun 3.4 */ import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.IOException; import java.io.ObjectInputStream; import java.io.ObjectOutputStream; import java.security.Key; import java.security.KeyPair; import java.security.KeyPairGenerator; import java.security.NoSuchAlgorithmException; import java.security.interfaces.RSAPrivateKey; import java.security.interfaces.RSAPublicKey; import javax.crypto.Cipher; import javax.crypto.NoSuchPaddingException; public class RSATool { public static void makekeyfile(String pubkeyfile, String privatekeyfile) throws NoSuchAlgorithmException, FileNotFoundException, IOException { // KeyPairGenerator类用于生成公钥和私钥对,基于RSA算法生成对象 KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance("RSA"); // 初始化密钥对生成器,密钥大小为1024位 keyPairGen.initialize(1024); // 生成一个密钥对,保存在keyPair中 KeyPair keyPair = keyPairGen.generateKeyPair(); // 得到私钥 RSAPrivateKey privateKey = (RSAPrivateKey) keyPair.getPrivate(); // 得到公钥 RSAPublicKey publicKey = (RSAPublicKey) keyPair.getPublic(); // 生成私钥 ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream( privatekeyfile)); oos.writeObject(privateKey); oos.flush(); oos.close(); oos = new ObjectOutputStream(new FileOutputStream(pubkeyfile)); oos.writeObject(publicKey); oos.flush(); oos.close(); System.out.println("make file ok!"); } /** * * @param k * @param data * @param encrypt * 1 加密 0解密 * @return * @throws NoSuchPaddingException * @throws Exception */ public static byte[] handleData(Key k, byte[] data, int encrypt) throws Exception { if (k != null) { Cipher cipher = Cipher.getInstance("RSA"); if (encrypt == 1) { cipher.init(Cipher.ENCRYPT_MODE, k); byte[] resultBytes = cipher.doFinal(data); return resultBytes; } else if (encrypt == 0) { cipher.init(Cipher.DECRYPT_MODE, k); byte[] resultBytes = cipher.doFinal(data); return resultBytes; } else { System.out.println("参数必须为: 1 加密 0解密"); } } return null; } public static void main(String[] args) throws Exception { String pubfile = "d:/temp/pub.key"; String prifile = "d:/temp/pri.key"; makekeyfile(pubfile, prifile); ObjectInputStream ois = new ObjectInputStream(new FileInputStream(pubfile)); RSAPublicKey pubkey = (RSAPublicKey) ois.readObject(); ois.close(); ois = new ObjectInputStream(new FileInputStream(prifile)); RSAPrivateKey prikey = (RSAPrivateKey) ois.readObject(); ois.close(); // 使用公钥加密 String msg = "~O(∩_∩)O哈哈~"; String enc = "UTF-8"; // 使用公钥加密私钥解密 System.out.println("原文: " + msg); byte[] result = handleData(pubkey, msg.getBytes(enc), 1); System.out.println("加密: " + new String(result, enc)); byte[] deresult = handleData(prikey, result, 0); System.out.println("解密: " + new String(deresult, enc)); msg = "嚯嚯"; // 使用私钥加密公钥解密 System.out.println("原文: " + msg); byte[] result2 = handleData(prikey, msg.getBytes(enc), 1); System.out.println("加密: " + new String(result2, enc)); byte[] deresult2 = handleData(pubkey, result2, 0); System.out.println("解密: " + new String(deresult2, enc)); } }
make file ok! 原文: ~O(∩_∩)O哈哈~ 加密: �1�7A N�1�7�1�7B�1�7�1�7�1�7�1�7�1�7ym�1�7�1�7r�1�7C�1�7�1�7�0�0�1�7�1�7�1�7�1�7�1�7�1�7�1�7U
5 AES对称加密
加密技术可以分为对称与非对称两种.
对称加密,解密,即加密与解密用的是同一把秘钥,常用的对称加密技术有DES,AES等
而非对称技术,加密与解密用的是不同的秘钥,常用的非对称加密技术有RSA等
为什么要有非对称加密,解密技术呢
假设这样一种场景A要发送一段消息给B,但是又不想以明文发送,所以就需要对消息进行加密.如果采用对称加密技术,那么加密与解密用的是同一把秘钥.除非B事先就知道A的秘钥,并且保存好.这样才可以解密A发来的消息.
由于对称技术只有一把秘钥,所以秘钥的管理是一个很麻烦的问题.而非对称技术的诞生就解决了这个问题.非对称加密与解密使用的是不同的秘钥,并且秘钥对是一一对应的,即用A的私钥加密的密文只有用A的公钥才能解密.
这样的话,每个人都有两把秘钥,私钥和公钥,私钥是只有自己才知道的,不能告诉别人,而公钥是公开的,大家都可以知道.这样,当A想要发送消息给B的时候,只需要用B的公钥对消息进行加密就可以了,由于B的私钥只有B才拥有,所以A用B的公钥加密的消息只有B才能解开.而B想更换自己的秘要时也很方便,只须把公钥告诉大家就可以了.
那么,既然非对称加密如此之好,对称加密就没有存在的必要了啊,其实不然,由于非对称加密算法的开销很大,所以如果直接以非对称技术来加密发送的消息效率会很差.那么怎么办呢?解决的办法也很简单,就是把对称加密技术与非对称加密技术结合起来使用.
还是这个例子:A要发送一个消息给B.
一,A先生成一个对称秘钥,这个秘钥可以是随机生成的,
二,A用B的公钥加密第一步生成的这个对称秘钥
三,A把加密过的对称秘钥发给B
四,A用第一步生成的这个对称秘钥加密实际要发的消息
五,A把用对称秘钥加密的消息发给B
对于B
他先收到A发来的对称秘钥,这个秘钥是用B的公钥加密过的,所以B需要用自己的私钥来解密这个秘钥
然后B又收到A发来的密文,这时候用刚才解密出来的秘钥来解密密文
这样子的整个过程既保证了安全,又保证了效率.
接下来是Java实现:
我这个Java实现使用的是AES的对称加密和RSA的非对称加密(DES的对称加密实现方法和AES的是一样的,但是由于DES算法本身有缺陷,容易被破解,所以现在多用其升级版AES对称加密)
/** * @file AES.java * @date 2016年8月5日 * @version 3.4.1 * * Copyright (c) 2013 Sihua Tech, Inc. All Rights Reserved. */ package encrypt; import java.io.File; import java.io.FileInputStream; import java.io.FileOutputStream; /** * * * @author chengjian.he * @version 3.4, 2016年8月5日 上午11:35:13 * @since Yeexun 3.4 */ import java.io.IOException; import java.io.InputStream; import java.io.ObjectInputStream; import java.io.OutputStream; import java.security.InvalidKeyException; import java.security.Key; import java.security.NoSuchAlgorithmException; import java.security.SecureRandom; import java.security.interfaces.RSAPrivateKey; import java.security.interfaces.RSAPublicKey; import javax.crypto.BadPaddingException; import javax.crypto.Cipher; import javax.crypto.IllegalBlockSizeException; import javax.crypto.KeyGenerator; import javax.crypto.NoSuchPaddingException; import javax.crypto.ShortBufferException; public class AES { private Key key; /** * 生成AES对称秘钥 * @throws NoSuchAlgorithmException */ public void generateKey() throws NoSuchAlgorithmException { KeyGenerator keygen = KeyGenerator.getInstance("AES"); SecureRandom random = new SecureRandom(); keygen.init(random); this.key = keygen.generateKey(); } /** * 加密 * @param in * @param out * @throws InvalidKeyException * @throws ShortBufferException * @throws IllegalBlockSizeException * @throws BadPaddingException * @throws NoSuchAlgorithmException * @throws NoSuchPaddingException * @throws IOException */ public void encrypt(InputStream in, OutputStream out) throws InvalidKeyException, ShortBufferException, IllegalBlockSizeException, BadPaddingException, NoSuchAlgorithmException, NoSuchPaddingException, IOException { this.crypt(in, out, Cipher.ENCRYPT_MODE); } /** * 解密 * @param in * @param out * @throws InvalidKeyException * @throws ShortBufferException * @throws IllegalBlockSizeException * @throws BadPaddingException * @throws NoSuchAlgorithmException * @throws NoSuchPaddingException * @throws IOException */ public void decrypt(InputStream in, OutputStream out) throws InvalidKeyException, ShortBufferException, IllegalBlockSizeException, BadPaddingException, NoSuchAlgorithmException, NoSuchPaddingException, IOException { this.crypt(in, out, Cipher.DECRYPT_MODE); } /** * 实际的加密解密过程 * @param in * @param out * @param mode * @throws IOException * @throws ShortBufferException * @throws IllegalBlockSizeException * @throws BadPaddingException * @throws NoSuchAlgorithmException * @throws NoSuchPaddingException * @throws InvalidKeyException */ public void crypt(InputStream in, OutputStream out, int mode) throws IOException, ShortBufferException, IllegalBlockSizeException, BadPaddingException, NoSuchAlgorithmException, NoSuchPaddingException, InvalidKeyException { Cipher cipher = Cipher.getInstance("AES"); cipher.init(mode, this.key); int blockSize = cipher.getBlockSize(); int outputSize = cipher.getOutputSize(blockSize); byte[] inBytes = new byte[blockSize]; byte[] outBytes = new byte[outputSize]; int inLength = 0; boolean more = true; while (more) { inLength = in.read(inBytes); if (inLength == blockSize) { int outLength = cipher.update(inBytes, 0, blockSize, outBytes); out.write(outBytes, 0, outLength); } else { more = false; } } if (inLength > 0) outBytes = cipher.doFinal(inBytes, 0, inLength); else outBytes = cipher.doFinal(); out.write(outBytes); out.flush(); } public void setKey(Key key) { this.key = key; } public Key getKey() { return key; } public static void main(String[] args) throws Exception { AES aes = new AES(); aes.generateKey(); File file = new File("D:/aa.jpg"); FileInputStream in = new FileInputStream(file); File file1 = new File("D:/temp/pub.key"); FileOutputStream out = new FileOutputStream(file1); aes.encrypt(in, out); aes.decrypt(in, out); } }
相关推荐
“全解密版”意味着原本可能存在的加密保护已经被去除,源代码完全暴露,用户可以毫无障碍地阅读和研究。这对于教学、学习和二次开发来说具有重要意义,因为可以直接查看到程序的内部逻辑,有助于理解算法设计、数据...
而“全解密”意味着这个版本的彩虹代刷系统已经去除了原有的保护措施,可能包括了去除加密、反调试等,使得开发者或使用者能够更深入地理解和定制系统功能。 首先,我们来深入了解彩虹代刷系统的组成部分和可能包含...
内容概要:本文档详细介绍了基于 MATLAB 实现的 LSTM-AdaBoost 时间序列预测模型,涵盖项目背景、目标、挑战、特点、应用领域以及模型架构和代码示例。随着大数据和AI的发展,时间序列预测变得至关重要。传统方法如 ARIMA 在复杂非线性序列中表现欠佳,因此引入了 LSTM 来捕捉长期依赖性。但 LSTM 存在易陷局部最优、对噪声鲁棒性差的问题,故加入 AdaBoost 提高模型准确性和鲁棒性。两者结合能更好应对非线性和长期依赖的数据,提供更稳定的预测。项目还展示了如何在 MATLAB 中具体实现模型的各个环节。 适用人群:对时间序列预测感兴趣的开发者、研究人员及学生,特别是有一定 MATLAB 编程经验和熟悉深度学习或机器学习基础知识的人群。 使用场景及目标:①适用于金融市场价格预测、气象预报、工业生产故障检测等多种需要时间序列分析的场合;②帮助使用者理解并掌握将LSTM与AdaBoost结合的实现细节及其在提高预测精度和抗噪方面的优势。 其他说明:尽管该模型有诸多优点,但仍存在训练时间长、计算成本高等挑战。文中提及通过优化数据预处理、调整超参数等方式改进性能。同时给出了完整的MATLAB代码实现,便于学习与复现。
palkert_3ck_01_0918
pepeljugoski_01_1106
tatah_01_1107
AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
题目:基于单片机的步进电机控制系统 模块: 主控:AT89C52RC 步进电机(ULN2003驱动) 按键(3个) 蓝牙(虚拟终端模拟) 功能: 1、可以通过蓝牙远程控制步进电机转动 2、可以通过按键实现手动与自动控制模式切换。 3、自动模式下,步进电机正转一圈,反转一圈,循环 4、手动模式下可以通过按键控制步进电机转动(顺时针和逆时针)
AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
内容概要:本文详细介绍了建设智慧校园平台所需的六个关键步骤。首先通过需求分析深入了解并确定校方和使用者的具体需求;其次是规划设计阶段,依据所得需求制定全面的建设方案。再者是对现有系统的整合——系统集成,确保新旧平台之间的互操作性和数据一致性。培训支持帮助全校教职工和学生快速熟悉新平台,提高效率。实施试点确保系统逐步稳定部署。最后,强调持续改进的重要性,以适应技术和环境变化。通过这一系列有序的工作,可以使智慧校园建设更为科学高效,减少失败风险。 适用人群:教育领域的决策者和技术人员,包括负责信息化建设和运维的团队成员。 使用场景及目标:用于指导高校和其他各级各类学校规划和发展自身的数字校园生态链;目的是建立更加便捷高效的现代化管理模式和服务机制。 其他说明:智慧校园不仅仅是简单的IT设施升级或软件安装,它涉及到全校范围内的流程再造和创新改革。
该文档系统梳理了人工智能技术在商业场景中的落地路径,聚焦内容生产、电商运营、智能客服、数据分析等12个高潜力领域,提炼出100个可操作性变现模型。内容涵盖AI工具开发、API服务收费、垂直场景解决方案、数据增值服务等多元商业模式,每个思路均配备应用场景拆解、技术实现路径及收益测算框架。重点呈现低代码工具应用、现有平台流量复用、细分领域自动化改造三类轻量化启动方案,为创业者提供从技术选型到盈利闭环的全流程参考。
palkert_3ck_02_0719
克鲁格曼专业化指数,最初是由Krugman于1991年提出,用于反映地区间产业结构的差异,也被用来衡量两个地区间的专业化水平,因而又称地区间专业化指数。该指数的计算公式及其含义可以因应用背景和具体需求的不同而有所调整,但核心都是衡量地区间的产业结构差异或专业化程度。 指标 年份、城市、第一产业人数(first_industry1)、第二产业人数(second_industry1)、第三产业人数(third_industry1)、专业化指数(ksi)。
AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
精品推荐,通信技术LTE干货资料合集,19份。 LTE PCI网络规划工具.xlsx LTE-S1切换占比专题优化分析报告.docx LTE_TDD问题定位指导书-吞吐量篇.docx LTE三大常见指标优化指导书.xlsx LTE互操作邻区配置核查原则.docx LTE信令流程详解指导书.docx LTE切换问题定位指导一(定位思路和问题现象).docx LTE劣化小区优化指导手册.docx LTE容量优化高负荷小区优化指导书.docx LTE小区搜索过程学习.docx LTE小区级与邻区级切换参数说明.docx LTE差小区处理思路和步骤.docx LTE干扰日常分析介绍.docx LTE异频同频切换.docx LTE弱覆盖问题分析与优化.docx LTE网优电话面试问题-应答技巧.docx LTE网络切换优化.docx LTE高负荷小区容量优化指导书.docx LTE高铁优化之多频组网优化提升“用户感知,网络价值”.docx
matlab程序代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
pepeljugoski_01_0508
szczepanek_01_0308
oif2007.384.01_IEEE