目标
本文在较高层次介绍实现YARN的application的方式。
概念和流程
通俗讲就是一个application提交客户端提交一个application到YARN Resource Manager(RM)。通过建立YarnClient对象可以完成这个工作。YarnClient启动之后,client之后可以建立application context,准备包含ApplicationMaster(AM)的第一个container,之后提交该application。你需要提供你的application运行所需的详细信息,包括本地文件、jar文件、实际运行的命令(包括必要的命令行参数)、任意操作系统环境变量设置等等。实际上,你需要做的就是描述启动你的ApplicationMaster的Unix 进程。
YARN ResourceManager之后将会在已分配的container中启动特定的ApplicationMaster。Application Master负责与YARN集群通信,并且处理appication的执行。它执行操作采用异步模式。在application启动期间,ApplicationMaster的主要任务是:a) 与ResourceManager通信,为下阶段的容器分配资源;b)container分配以后,与 YARN *NodeManager*(NMs)通信以启动application container。 其中任务a可以通过AMRMClientAsync 对象,利用AMRMClientAsync.CallbackHandler类型的event handler中的事件处理方法进行异步处理。event handler需要明确的设置client。任务b在容器被分配后,可以通过部署一个可运行对象来启动container。作为启动container的一部分,AM需要指定包含启动信息(如命令行格式,环境变量等)的ContainerLaunchContext。
在执行一个application过程中,ApplicationMaster 通过NMClientAsync 对象与NodeManagers通信。所有container事件通过与NMClientAsync相关联的NMClientAsync.CallbackHandler处理。典型的callback handler处理client start,stop,status update和error事件。ApplicatonMaster也通过AMRMClientAsync.CallbackHandler的getProgress()方法给ResourceManager汇报进度。
除了异步client,还有用于特定工作流的同步版本(AMRMClient and NMClient)。推荐使用异步client,因为其用法简单,并且本文将主要介绍异步client。
接口
以下是重要的接口:
- Client<-->ResourceManager
使用YarnClient 对象。
- ApplicationMaster<-->ResourceManager
使用AMRMClientAsync对象,利用AMRMClientAsync.CallbackHandler异步处理事件
- ApplicationMaster<-->NodeManager
启动container.使用NMClientAsync对象与NodeManager通信,通过MClientAsync.CallbackHandler处理container事件。
备注:
- YARN application的三个主要协议(ApplicationClientProtocol, ApplicationMasterProtocol and ContainerManagementProtocol)依然保留。这三个client封装3个协议,为YARN application提供简单的开发模式。
- 在非常罕见的情况下,开发者可能想要直接使用这3个协议实现一个application。然而,这样的使用行为在下一代将不再鼓励。
编写一个简单的Yarn Application
编写简单client
- Client第一步需要做的就是初始化并启动YarnCient。
YarnClient yarnClient = YarnClient.createYarnClient(); yarnClient.init(conf); yarnClient.start();
- 一旦client建立完成,client需要创建一个application,获取它的application id。
YarnClientApplication app = yarnClient.createApplication(); GetNewApplicationResponse appResponse = app.getNewApplicationResponse();
- 来自YarnClientApplication的新application的response额外包含了集群的信息,例如集群的最小/最大 的resource capability.你可以依据此信息正确设定将要启动ApplicationMaster的container。
- client的主要难点是设置ApplicationSubmissionContext ,它定义了需要RM启动AM需要的所有信息。client需要在context中设置以下信息:
- Application 信息: id, name。
- Queue, priority 信息: application将要提交到的目标队列,application分配的优先级。
- User: 提交application的用户信息。
- ContainerLaunchContext: 将要启动和运行AM的Container的信息。在之前已经提到,ContainerLaunchContext定义了运行application所有必要信息,例如 local *Resources (二进制, jars, 文件等等.), 环境变量设置 (CLASSPATH 等等.), 执行的Command,以及security Tokens (RECT).
// set the application submission context ApplicationSubmissionContext appContext = app.getApplicationSubmissionContext(); ApplicationId appId = appContext.getApplicationId(); appContext.setKeepContainersAcrossApplicationAttempts(keepContainers); appContext.setApplicationName(appName); // set local resources for the application master // local files or archives as needed // In this scenario, the jar file for the application master is part of the local resources Map<String, LocalResource> localResources = new HashMap<String, LocalResource>(); LOG.info("Copy App Master jar from local filesystem and add to local environment"); // Copy the application master jar to the filesystem // Create a local resource to point to the destination jar path FileSystem fs = FileSystem.get(conf); addToLocalResources(fs, appMasterJar, appMasterJarPath, appId.toString(), localResources, null); // Set the log4j properties if needed if (!log4jPropFile.isEmpty()) { addToLocalResources(fs, log4jPropFile, log4jPath, appId.toString(), localResources, null); } // The shell script has to be made available on the final container(s) // where it will be executed. // To do this, we need to first copy into the filesystem that is visible // to the yarn framework. // We do not need to set this as a local resource for the application // master as the application master does not need it. String hdfsShellScriptLocation = ""; long hdfsShellScriptLen = 0; long hdfsShellScriptTimestamp = 0; if (!shellScriptPath.isEmpty()) { Path shellSrc = new Path(shellScriptPath); String shellPathSuffix = appName + "/" + appId.toString() + "/" + SCRIPT_PATH; Path shellDst = new Path(fs.getHomeDirectory(), shellPathSuffix); fs.copyFromLocalFile(false, true, shellSrc, shellDst); hdfsShellScriptLocation = shellDst.toUri().toString(); FileStatus shellFileStatus = fs.getFileStatus(shellDst); hdfsShellScriptLen = shellFileStatus.getLen(); hdfsShellScriptTimestamp = shellFileStatus.getModificationTime(); } if (!shellCommand.isEmpty()) { addToLocalResources(fs, null, shellCommandPath, appId.toString(), localResources, shellCommand); } if (shellArgs.length > 0) { addToLocalResources(fs, null, shellArgsPath, appId.toString(), localResources, StringUtils.join(shellArgs, " ")); } // Set the env variables to be setup in the env where the application master will be run LOG.info("Set the environment for the application master"); Map<String, String> env = new HashMap<String, String>(); // put location of shell script into env // using the env info, the application master will create the correct local resource for the // eventual containers that will be launched to execute the shell scripts env.put(DSConstants.DISTRIBUTEDSHELLSCRIPTLOCATION, hdfsShellScriptLocation); env.put(DSConstants.DISTRIBUTEDSHELLSCRIPTTIMESTAMP, Long.toString(hdfsShellScriptTimestamp)); env.put(DSConstants.DISTRIBUTEDSHELLSCRIPTLEN, Long.toString(hdfsShellScriptLen)); // Add AppMaster.jar location to classpath // At some point we should not be required to add // the hadoop specific classpaths to the env. // It should be provided out of the box. // For now setting all required classpaths including // the classpath to "." for the application jar StringBuilder classPathEnv = new StringBuilder(Environment.CLASSPATH.$$()) .append(ApplicationConstants.CLASS_PATH_SEPARATOR).append("./*"); for (String c : conf.getStrings( YarnConfiguration.YARN_APPLICATION_CLASSPATH, YarnConfiguration.DEFAULT_YARN_CROSS_PLATFORM_APPLICATION_CLASSPATH)) { classPathEnv.append(ApplicationConstants.CLASS_PATH_SEPARATOR); classPathEnv.append(c.trim()); } classPathEnv.append(ApplicationConstants.CLASS_PATH_SEPARATOR).append( "./log4j.properties"); // Set the necessary command to execute the application master Vector<CharSequence> vargs = new Vector<CharSequence>(30); // Set java executable command LOG.info("Setting up app master command"); vargs.add(Environment.JAVA_HOME.$$() + "/bin/java"); // Set Xmx based on am memory size vargs.add("-Xmx" + amMemory + "m"); // Set class name vargs.add(appMasterMainClass); // Set params for Application Master vargs.add("--container_memory " + String.valueOf(containerMemory)); vargs.add("--container_vcores " + String.valueOf(containerVirtualCores)); vargs.add("--num_containers " + String.valueOf(numContainers)); vargs.add("--priority " + String.valueOf(shellCmdPriority)); for (Map.Entry<String, String> entry : shellEnv.entrySet()) { vargs.add("--shell_env " + entry.getKey() + "=" + entry.getValue()); } if (debugFlag) { vargs.add("--debug"); } vargs.add("1>" + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/AppMaster.stdout"); vargs.add("2>" + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/AppMaster.stderr"); // Get final commmand StringBuilder command = new StringBuilder(); for (CharSequence str : vargs) { command.append(str).append(" "); } LOG.info("Completed setting up app master command " + command.toString()); List<String> commands = new ArrayList<String>(); commands.add(command.toString()); // Set up the container launch context for the application master ContainerLaunchContext amContainer = ContainerLaunchContext.newInstance( localResources, env, commands, null, null, null); // Set up resource type requirements // For now, both memory and vcores are supported, so we set memory and // vcores requirements Resource capability = Resource.newInstance(amMemory, amVCores); appContext.setResource(capability); // Service data is a binary blob that can be passed to the application // Not needed in this scenario // amContainer.setServiceData(serviceData); // Setup security tokens if (UserGroupInformation.isSecurityEnabled()) { // Note: Credentials class is marked as LimitedPrivate for HDFS and MapReduce Credentials credentials = new Credentials(); String tokenRenewer = conf.get(YarnConfiguration.RM_PRINCIPAL); if (tokenRenewer == null | | tokenRenewer.length() == 0) { throw new IOException( "Can't get Master Kerberos principal for the RM to use as renewer"); } // For now, only getting tokens for the default file-system. final Token<?> tokens[] = fs.addDelegationTokens(tokenRenewer, credentials); if (tokens != null) { for (Token<?> token : tokens) { LOG.info("Got dt for " + fs.getUri() + "; " + token); } } DataOutputBuffer dob = new DataOutputBuffer(); credentials.writeTokenStorageToStream(dob); ByteBuffer fsTokens = ByteBuffer.wrap(dob.getData(), 0, dob.getLength()); amContainer.setTokens(fsTokens); } appContext.setAMContainerSpec(amContainer);
- 设置过程完成之后,client已经准备好提交application(设置了优先级和队列)。
// Set the priority for the application master Priority pri = Priority.newInstance(amPriority); appContext.setPriority(pri); // Set the queue to which this application is to be submitted in the RM appContext.setQueue(amQueue); // Submit the application to the applications manager // SubmitApplicationResponse submitResp = applicationsManager.submitApplication(appRequest); yarnClient.submitApplication(appContext);
- 在这个时候,RM在后台已经接受了application,之后分配满足资源需求的container并建立之,然后在分配的container中启动AM。
- client有多种方式跟踪实际任务的进度.
- 它可以通过YarnClient的getApplicationReport()方法与RM通信,请求application的report。
// Get application report for the appId we are interested in ApplicationReport report = yarnClient.getApplicationReport(appId);
接受到的ApplicationReport由如下内容组成:
- 通用Application信息: Application id, application提交到的队列,提交application的用户,application的启动时间。
- AM运行的host,监听client请求的rpc端口,client需要与AM通信的token。
- Application tracking 信息: 如果application支持某种形式的进度跟踪,它可以设置tracking url,client通过ApplicationReport的getTrackingUrl()方法可以监控进度。
- Application状态 :application的状态可以通过ApplicationReport#getYarnApplicationState看到。如果YarnApplicationState 被设置为FINISHED,client应该参考ApplicationReport#getFinalApplicationStatus 来检查application任务实际的成功/失败。如果是失败的情况,ApplicationReport#getDiagnostics可能包含一些失败的原因或者提示。
- 如果ApplicationMaster支持,client可以直接通过application report中的 host:rpcport信息查询AM自身获取进度更新。当然也可以使用report中的tracking url查看进度。
- 在通常情况下,如果application耗时太长,或者因为其他原因,client可能希望杀死该application。YarnClient支持killApplication ,即允许client通过ResourceManager发送一个kill信号到AM。ApplicationMaster也可以设计为支持通过它的rpc层的abort调用,client可以直接通过该手段进行操作。
yarnClient.killApplication(appId);
编写ApplicationMaster (AM)
- AM是job的实际owner。它通过client提供job的所有必要信息和资源,并由RM启动、监管和完成。
- 作为AM,它在container中启动,该container可能是与其他container共享同一个物理主机,考虑到多租户的性质,除其他问题外,它不能作出任何假设的东西,如预先配置的监听端口。
- 在AM启动时,几个环境变量中的参数对其是可用的。这些包括AM container的ContainerId,application的提交时间,运行ApplicationMaster的NM(NodeManager)的详情。
- 与RM的交互需要一个ApplicationAttemptId (每个application在失败的情况下可以有多个attempt)。ApplicationAttemptId 可以通过AM的container id获取。有一些工具性的API可以将从环境变量获得的值转换为对象。
Map<String, String> envs = System.getenv(); String containerIdString = envs.get(ApplicationConstants.AM_CONTAINER_ID_ENV); if (containerIdString == null) { // container id should always be set in the env by the framework throw new IllegalArgumentException( "ContainerId not set in the environment"); } ContainerId containerId = ConverterUtils.toContainerId(containerIdString); ApplicationAttemptId appAttemptID = containerId.getApplicationAttemptId();
- AM初始化完成之后,我们可以启动这两个client:一个是与ResourceManager交互,一个是与NodeManagers交互。我们启动它们并赋予定制化的event handler,稍后本文会详细介绍这些event handler。
AMRMClientAsync.CallbackHandler allocListener = new RMCallbackHandler(); amRMClient = AMRMClientAsync.createAMRMClientAsync(1000, allocListener); amRMClient.init(conf); amRMClient.start(); containerListener = createNMCallbackHandler(); nmClientAsync = new NMClientAsyncImpl(containerListener); nmClientAsync.init(conf); nmClientAsync.start();
- AM不得不向RM发出心跳以表名AM是存活的。在RM端超时时间间隔设置通过访问YarnConfiguration.RM_AM_EXPIRY_INTERVAL_MS获得,默认值通过YarnConfiguration.DEFAULT_RM_AM_EXPIRY_INTERVAL_MS设置。ApplicationMaster需要注册自身到ResourceManager以启动心跳。
// Register self with ResourceManager // This will start heartbeating to the RM appMasterHostname = NetUtils.getHostname(); RegisterApplicationMasterResponse response = amRMClient .registerApplicationMaster(appMasterHostname, appMasterRpcPort, appMasterTrackingUrl);
- 在注册的应答信息中,可能包含最大资源容量,你可以使用这个信息来校验application的请求。
// Dump out information about cluster capability as seen by the // resource manager int maxMem = response.getMaximumResourceCapability().getMemory(); LOG.info("Max mem capabililty of resources in this cluster " + maxMem); int maxVCores = response.getMaximumResourceCapability().getVirtualCores(); LOG.info("Max vcores capabililty of resources in this cluster " + maxVCores); // A resource ask cannot exceed the max. if (containerMemory > maxMem) { LOG.info("Container memory specified above max threshold of cluster." + " Using max value." + ", specified=" + containerMemory + ", max=" + maxMem); containerMemory = maxMem; } if (containerVirtualCores > maxVCores) { LOG.info("Container virtual cores specified above max threshold of cluster." + " Using max value." + ", specified=" + containerVirtualCores + ", max=" + maxVCores); containerVirtualCores = maxVCores; } List<Container> previousAMRunningContainers = response.getContainersFromPreviousAttempts(); LOG.info("Received " + previousAMRunningContainers.size() + " previous AM's running containers on AM registration.");
- 基于task请求,AM可以申请一组container来运行它的tasks。我们现在能计算出需要多少container,按需请求container。
List<Container> previousAMRunningContainers = response.getContainersFromPreviousAttempts(); List<Container> previousAMRunningContainers = response.getContainersFromPreviousAttempts(); LOG.info("Received " + previousAMRunningContainers.size() + " previous AM's running containers on AM registration."); int numTotalContainersToRequest = numTotalContainers - previousAMRunningContainers.size(); // Setup ask for containers from RM // Send request for containers to RM // Until we get our fully allocated quota, we keep on polling RM for // containers // Keep looping until all the containers are launched and shell script // executed on them ( regardless of success/failure). for (int i = 0; i < numTotalContainersToRequest; ++i) { ContainerRequest containerAsk = setupContainerAskForRM(); amRMClient.addContainerRequest(containerAsk); }
- 在setupContainerAskForRM()中,以下两项需要设置:
- Resource capability: 目前,YARN支持基于内存的资源请求,所以请求信息应该定义需要多少内存。该值需要以MB为单位定义,而且要小于集群的最大容量,并且是最小容量的精确倍数。内存资源会对应于task container所在的物理资源限制。YARN还支持基于计算核模型(vCore)资源,这会在代码中演示。
- Priority: 当申请一组container时,AM可能会为其中每一个定义不同的优先级。例如,Map-Reduce AM会为Map task的container分配较高的优先级,而对Reduce task container分配较低优先级。
private ContainerRequest setupContainerAskForRM() { // setup requirements for hosts // using * as any host will do for the distributed shell app // set the priority for the request Priority pri = Priority.newInstance(requestPriority); // Set up resource type requirements // For now, memory and CPU are supported so we set memory and cpu requirements Resource capability = Resource.newInstance(containerMemory, containerVirtualCores); ContainerRequest request = new ContainerRequest(capability, null, null, pri); LOG.info("Requested container ask: " + request.toString()); return request; }
- application manager发送container allocation request之后,通过AMRMClientAsync的event handler异步启动container。handler需要实现AMRMClientAsync.CallbackHandler interface接口。
- 当有container被分配时,handler需要设置一个线程来启动container。这里我们使用LaunchContainerRunnable 来演示。我们将在下面的章节中讨论LaunchContainerRunnable 。
@Override public void onContainersAllocated(List<Container> allocatedContainers) { LOG.info("Got response from RM for container ask, allocatedCnt=" + allocatedContainers.size()); numAllocatedContainers.addAndGet(allocatedContainers.size()); for (Container allocatedContainer : allocatedContainers) { LaunchContainerRunnable runnableLaunchContainer = new LaunchContainerRunnable(allocatedContainer, containerListener); Thread launchThread = new Thread(runnableLaunchContainer); // launch and start the container on a separate thread to keep // the main thread unblocked // as all containers may not be allocated at one go. launchThreads.add(launchThread); launchThread.start(); } }
- 在心跳过程中,event handler上报application的进度。
@Override public float getProgress() { // set progress to deliver to RM on next heartbeat float progress = (float) numCompletedContainers.get() / numTotalContainers; return progress; }
- container启动线程实际执行在NMs启动container的工作。在container分配到AM之后,它需要遵循类似的处理过程——client为将要在分配的container中运行的task设置ContainerLaunchContext。一旦ContainerLaunchContext 定义,AM可以通过NMClientAsync启动container。
// Set the necessary command to execute on the allocated container Vector<CharSequence> vargs = new Vector<CharSequence>(5); // Set executable command vargs.add(shellCommand); // Set shell script path if (!scriptPath.isEmpty()) { vargs.add(Shell.WINDOWS ? ExecBatScripStringtPath : ExecShellStringPath); } // Set args for the shell command if any vargs.add(shellArgs); // Add log redirect params vargs.add("1>" + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stdout"); vargs.add("2>" + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stderr"); // Get final commmand StringBuilder command = new StringBuilder(); for (CharSequence str : vargs) { command.append(str).append(" "); } List<String> commands = new ArrayList<String>(); commands.add(command.toString()); // Set up ContainerLaunchContext, setting local resource, environment, // command and token for constructor. // Note for tokens: Set up tokens for the container too. Today, for normal // shell commands, the container in distribute-shell doesn't need any // tokens. We are populating them mainly for NodeManagers to be able to // download anyfiles in the distributed file-system. The tokens are // otherwise also useful in cases, for e.g., when one is running a // "hadoop dfs" command inside the distributed shell. ContainerLaunchContext ctx = ContainerLaunchContext.newInstance( localResources, shellEnv, commands, null, allTokens.duplicate(), null); containerListener.addContainer(container.getId(), container); nmClientAsync.startContainerAsync(container, ctx);
- NMClientAsync对象与它的event handler一起处理container的event。包括container 启动,停止,状态变更以及发生错误的事件。
- 在ApplicationMaster决定work已经完成之后,它需要通过 AM-RM client注销自身,之后停止client。
try { amRMClient.unregisterApplicationMaster(appStatus, appMessage, null); } catch (YarnException ex) { LOG.error("Failed to unregister application", ex); } catch (IOException e) { LOG.error("Failed to unregister application", e); } amRMClient.stop();
FAQ
我怎么部署我的application的jar到需要它的YARN集群中的节点上?
你可以使用LocalResource 来添加resource到你的application request中。这样YARN会部署该resource到ApplicationMaster node。如果resource是tgz,zip或者jar——你可以用YARN解压。那么,你所需要做的就是添加解压文件夹到你的classpath。举个例子,当创建你的application请求时:
File packageFile = new File(packagePath); Url packageUrl = ConverterUtils.getYarnUrlFromPath( FileContext.getFileContext.makeQualified(new Path(packagePath))); packageResource.setResource(packageUrl); packageResource.setSize(packageFile.length()); packageResource.setTimestamp(packageFile.lastModified()); packageResource.setType(LocalResourceType.ARCHIVE); packageResource.setVisibility(LocalResourceVisibility.APPLICATION); resource.setMemory(memory); containerCtx.setResource(resource); containerCtx.setCommands(ImmutableList.of( "java -cp './package/*' some.class.to.Run " + "1>" + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stdout " + "2>" + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stderr")); containerCtx.setLocalResources( Collections.singletonMap("package", packageResource)); appCtx.setApplicationId(appId); appCtx.setUser(user.getShortUserName); appCtx.setAMContainerSpec(containerCtx); yarnClient.submitApplication(appCtx);
就像你看到的,setLocalResources 命令传入了一个该resource的map。map中的name在你的application工作目录中变成一个符号链接,所以你可以用./package/*的方式访问构件中的内容。
Note: java的classpath参数是大小写敏感的,确保你的语法完全正确。
我怎么获得ApplicationMaster的ApplicationAttemptId?
ApplicationAttemptId 会通过环境变量传入AM,通过ConverterUtils 的工具方法可以将该值可以转换为ApplicationAttemptId 对象。
为什么我的container被NodeManager杀死了?
这有可能是因为内存使用过高,超过了你申请的container的内存大小。有很多原因会引起这个问题。首先,查看NodeManager杀死你的container时dump出来的进程树。如果你已经超过了物理内存限制,那说明你的app使用了太多的物理内存。如果你运行的一个java app,你可以使用-hprof 来查看是什么占用了heap的空间。如果你已经超出了虚拟内存,则可能需要增加集群配置的变量yarn.nodemanager.vmem-pmem-ratio的值。
How do I include native libraries?
在启动container的命令行中设置-Djava.library.path会引起hadoop使用的native libraries不能被正确加载,最终会导致错误。简洁的用法是使用LD_LIBRARY_PATH 。
相关推荐
Hadoop 2.7.2引入了YARN(Yet Another Resource Negotiator),作为资源管理框架,负责调度和管理集群中的计算资源。相比早期版本,YARN提高了系统的可扩展性和安全性,降低了MapReduce的耦合度,使得其他计算框架如...
1. YARN改进:在Hadoop 2.7.2中,YARN(Yet Another Resource Negotiator)进一步提升了资源管理效率,优化了任务调度算法,降低了作业启动延迟,增强了系统的整体性能。 2. HDFS增强:增加了对大文件的支持,改进...
YARN(Yet Another Resource Negotiator)作为MapReduce 2的主要改进,分离了资源管理和作业调度,使得Hadoop能够更好地支持多种计算框架,如Spark、Tez等。 在Linux环境下部署Hadoop 2.7.2,首先需要在Window上解...
描述中提到的"下载资源hadoop2.7.2资源包"意味着你可以在这个链接(https://archive.apache.org/dist/hadoop/common/)找到官方发布的Hadoop 2.7.2版本,这是获取开源软件的可靠渠道。用户可以在这里下载到二进制和...
Hadoop 2.7.2 是一个开源框架,主要用于分布式存储和计算,是大数据处理领域的重要组成部分。这个版本的Hadoop在2015年发布,提供了许多改进和新特性,使得它能在各种Linux环境下稳定运行,从而满足企业对大规模数据...
Apache Hadoop 2.7.2 是一个广泛...深入研究Hadoop 2.7.2的源码,不仅可以提升对大数据处理的理解,还能帮助开发者编写更高效、可靠的分布式应用程序。同时,它也是学习分布式系统、并行计算和云原生架构的宝贵资源。
Hadoop2.7.2是该系统的一个稳定版本。伪分布部署是指在单机上模拟分布式环境运行Hadoop的过程,即一个节点既是NameNode也是DataNode,既执行Master角色又执行Slave角色,这为开发者在没有多台机器的情况下也能体验和...
现在可以编写MapReduce程序并利用Hadoop的分布式计算能力。请注意,虽然Windows支持Hadoop,但官方推荐的生产环境仍然是Linux,因为Windows环境下可能存在更多的兼容性和性能问题。然而,对于学习和开发目的,...
在这个名为“hadoop2.7.2安装依赖文件.zip”的压缩包中,包含了一系列在Windows环境下安装和运行Hadoop 2.7.2版本所必需的组件。下面我们将详细探讨这些文件及其在Hadoop生态系统中的作用。 首先,`hadoop.dll`是一...
8. **启动Hadoop服务**:最后,通过start-dfs.cmd和start-yarn.cmd脚本启动Hadoop的DataNodes、NameNodes以及ResourceManager等服务。 以上就是在Windows 7环境中安装和配置Hadoop 2.7.2所需的关键步骤,其中hadoop...
本文档将详细介绍如何搭建一个Hadoop 2.7.2版本的高可用(High Availability,简称HA)集群。此集群将包含五台服务器,分别命名为cancer01至cancer05,其中两台作为NameNode节点(活跃与备用),一台作为JournalNode...
这个压缩包文件“win10下编译过的hadoop2.7.2 jar包”是专门为在Windows 10操作系统上运行Hadoop 2.7.2版本而准备的。这个版本的Hadoop包含了所有必要的库文件和依赖,使得开发者能够在本地环境中配置和运行Hadoop...
这个"Hadoop_2.7.2安装包.rar"包含了Hadoop 2.7.2版本的所有组件,供用户在本地或者集群环境中搭建大数据处理平台。在这个版本中,Hadoop已经相当成熟,提供了稳定性和性能优化。 在安装Hadoop之前,我们需要了解...
Hadoop是用Java编写的,因此JDK是必需的。 2. **获取源码**:从Apache官方网站下载Hadoop 2.7.2的源代码,通常是一个`.tar.gz`或`.zip`文件。 3. **解压与编译**:使用解压缩工具(如7-Zip)解压源代码,然后打开...
《Hadoop 2.7.2与HBase的集成——深入理解hadoop-2.7.2-hbase-jar.tar.gz》 Hadoop是Apache软件基金会的一个开源项目,它为大规模数据处理提供了一个分布式计算框架。Hadoop的核心包括HDFS(Hadoop Distributed ...
3. **安全模型**:Hadoop 2.x引入了YARN(Yet Another Resource Negotiator),默认启用Secure Mode,这意味着在Windows上运行Hadoop可能需要配置Kerberos认证,这在Windows环境中相对复杂。 4. **文件权限**:...
`hadoop-2.7.2.tar.gz`是Hadoop 2.7.2的核心组件和库的打包文件,解压后将包含所有必要的二进制文件、配置文件、文档以及示例。这个文件通常在Linux服务器上通过`tar -zxvf hadoop-2.7.2.tar.gz`命令进行解压,然后...
标题 "hadoop-2.7.2-win10_x64.7z" 提供了关键信息,这是一款针对64位Windows 10系统的Hadoop版本,版本号为2.7.2,并且已经过编译,可以预期在解压后直接运行。Hadoop是一个开源的分布式计算框架,由Apache软件基金...
但是,通过一些特定的步骤,可以在Windows系统上编译和使用Hadoop,而提供的“win7下编译过的hadoop2.7.2”文件正是为了简化这一过程。 首先,我们来看一下Hadoop在Windows上的编译步骤。在Windows 7环境下编译...