上一篇博客介绍了ES中的简单查询API的使用,本篇将介绍ES提供的聚合API的使用。ES提供的聚合功能可以用来进行简单的数据分析。本文仍然以上一篇提供的数据为例来讲解。数据如下:
1 | 刘备 | 男 | 24 | 1985-02-03 | 1 | 湖南省长沙市 | true |
2 | 关羽 | 男 | 22 | 1987-08-23 | 2 | 四川省成都市 | false |
3 | 糜夫人 | 女 | 19 | 1990-06-12 | 1 | 上海市 | false |
4 | 张飞 | 男 | 20 | 1989-07-30 | 3 | 北京市 | false |
5 | 诸葛亮 | 男 | 18 | 1992-04-27 | 2 | 江苏省南京市 | true |
6 | 孙尚香 | 女 | 16 | 1994-05-21 | 3 | false | |
7 | 马超 | 男 | 19 | 1991-10-20 | 1 | 黑龙江省哈尔滨市 | false |
8 | 赵云 | 男 | 23 | 1986-10-26 | 2 | 浙江省杭州市 | false |
本文的主要内容有:
- metric API的使用
- bucketing API的使用
- 两类API的嵌套使用
1. 聚合API
ES中的Aggregations API是从Facets功能基础上发展而来,官网正在进行替换计划,建议用户使用Aggregations API,而不是Facets API。ES中的聚合上可以分为下面两类:
- metric(度量)聚合:度量类型聚合主要针对的number类型的数据,需要ES做比较多的计算工作
- bucketing(桶)聚合:划分不同的“桶”,将数据分配到不同的“桶”里。非常类似sql中的group语句的含义。
metric既可以作用在整个数据集上,也可以作为bucketing的子聚合作用在每一个“桶”中的数据集上。当然,我们可以把整个数据集合看做一个大“桶”,所有的数据都分配到这个大“桶”中。
ES中的聚合API的调用格式如下:
"aggregations" : { // 表示聚合操作,可以使用aggs替代
"<aggregation_name>" : { // 聚合名,可以是任意的字符串。用做响应的key,便于快速取得正确的响应数据。
"<aggregation_type>" : { // 聚合类别,就是各种类型的聚合,如min等
<aggregation_body> // 聚合体,不同的聚合有不同的body
}
[,"aggregations" : { [<sub_aggregation>]+ } ]? // 嵌套的子聚合,可以有0或多个
}
[,"<aggregation_name_2>" : { ... } ]* // 另外的聚合,可以有0或多个
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
1.1 度量类型(metric)聚合
(1)Min Aggregation
最小值查询,作用于number类型字段上。查询2班最小的年龄值。
curl -XPOST "192.168.1.101:9200/student/student/_search" -d
'
{
"query": { // 可以先使用query查询得到需要的数据集
"term": {
"classNo": "2"
}
},
"aggs": {
"min_age": {
"min": {
"field": "age"
}
}
}
}
'
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
查询结果为:
{
"took": 19, // 前面部分数据与普通的查询数据相同
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 3,
"max_score": 1.4054651,
"hits": [
{
"_index": "student",
"_type": "student",
"_id": "2",
"_score": 1.4054651,
"_source": {
"studentNo": "2",
"name": "关羽",
"male": "男",
"age": "22",
"birthday": "1987-08-23",
"classNo": "2",
"isLeader": "false"
}
},
{
"_index": "student",
"_type": "student",
"_id": "8",
"_score": 1,
"_source": {
"studentNo": "8",
"name": "赵云",
"male": "男",
"age": "23",
"birthday": "1986-10-26",
"classNo": "2",
"isLeader": "false"
}
},
{
"_index": "student",
"_type": "student",
"_id": "5",
"_score": 0.30685282,
"_source": {
"studentNo": "5",
"name": "诸葛亮",
"male": "男",
"age": "18",
"birthday": "1992-04-27",
"classNo": "2",
"isLeader": "true"
}
}
]
},
"aggregations": { // 聚合结果
"min_age": { // 前面输入的聚合名
"value": 18, // 聚合后的数据
"value_as_string": "18.0"
}
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
上面的聚合查询有两个要注意的点:
- 可以通过query先过滤数据
- 返回的结果会包含聚合操作所作用的数据全集
有时候我们对作用的数据全集并不太敢兴趣,我们仅仅需要最终的聚合结果。可以通过查询类型(search_type)参数来实现这个需求。下面查询出来的数据量会大大减少,ES内部也会在查询时减少一些耗时的步骤,所以查询效率会提高。
curl -XPOST "192.168.1.101:9200/student/student/_search?search_type=count" -d // 注意这里的search_type=count
'
{
"query": { // 可以先使用query查询得到需要的数据集
"term": {
"classNo": "2"
}
},
"aggs": {
"min_age": {
"min": {
"field": "age"
}
}
}
}
'
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
本次的查询结果为:
{
...
"aggregations": { // 聚合结果
"min_age": { // 前面输入的聚合名
"value": 18, // 聚合后的数据
"value_as_string": "18.0"
}
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
(2)Max Aggregation
最大值查询。下面查询2班最大的年龄值,查询结果为23。
curl -XPOST "192.168.1.101:9200/student/student/_search?search_type=count" -d
'
{
"query": {
"term": {
"classNo": "2"
}
},
"aggs": {
"max_age": {
"max": {
"field": "age"
}
}
}
}
'
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
(3)Sum Aggregation
数值求和。下面统计查询2班的年龄总和,查询结果为63。
curl -XPOST "192.168.1.101:9200/student/student/_search?search_type=count" -d
'
{
"query": {
"term": {
"classNo": "2"
}
},
"aggs": {
"sum_age": {
"sum": {
"field": "age"
}
}
}
}
'
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
(4)Avg Aggregation
计算平均值。下面计算查询2班的年龄平均值,结果为21。
curl -XPOST "192.168.1.101:9200/student/student/_search?search_type=count" -d
'
{
"query": {
"term": {
"classNo": "2"
}
},
"aggs": {
"avg_age": {
"avg": {
"field": "age"
}
}
}
}
'
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
(5)Stats Aggregation
统计查询,一次性统计出某个字段上的常用统计值。下面对整个学校的学生进行简单地统计。
curl -XPOST "192.168.1.101:9200/student/student/_search?search_type=count" -d
'
{
"aggs": {
"stats_age": {
"stats": {
"field": "age"
}
}
}
}
'
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
查询结果为:
{
... // 次要数据省略
"aggregations": {
"stats_age": {
"count": 8, // 含有年龄数据的学生计数
"min": 16, // 年龄最小值
"max": 24, // 年龄最大值
"avg": 20.125, // 年龄平均值
"sum": 161, // 年龄总和
"min_as_string": "16.0",
"max_as_string": "24.0",
"avg_as_string": "20.125",
"sum_as_string": "161.0"
}
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
(6)Top hits Aggregation
取符合条件的前n条数据记录。下面查询全校年龄排在前2位的学生,仅需返回学生姓名和年龄。
curl -XPOST "192.168.1.101:9200/student/student/_search?search_type=count" -d
{
"aggs": {
"top_age": {
"top_hits": {
"sort": [ // 排序
{
"age": { // 按年龄降序
"order": "desc"
}
}
],
"_source": {
"include": [ // 指定返回字段
"name",
"age"
]
},
"size": 2 // 取前2条数据
}
}
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
返回结果为:
{
...
"aggregations": {
"top_age": {
"hits": {
"total": 9,
"max_score": null,
"hits": [
{
"_index": "student",
"_type": "student",
"_id": "1",
"_score": null,
"_source": {
"name": "刘备",
"age": "24"
},
"sort": [
24
]
},
{
"_index": "student",
"_type": "student",
"_id": "8",
"_score": null,
"_source": {
"name": "赵云",
"age": "23"
},
"sort": [
23
]
}
]
}
}
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
1.2 桶类型(bucketing)聚合
(1)Terms Aggregation
按照指定的1或多个字段将数据划分成若干个小的区间,计算落在每一个区间上记录数量,并按指定顺序进行排序。下面统计每个班的学生数,并按学生数从大到小排序,取学生数靠前的2个班级。
curl -XPOST "192.168.1.101:9200/student/student/_search?search_type=count" -d
'
{
"aggs": {
"terms_classNo": {
"terms": {
"field": "classNo", // 按照班号进行分组
"order": { // 按学生数从大到小排序
"_count": "desc"
},
"size": 2 // 取前两名
}
}
}
}
'
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
值得注意的,取得的前2名的学生数实际上是一个近似值,ES的实现方式参见这里。如果想要取得精确值,可以不指定size值,使其进行一次全排序,然后在程序中自行去取前2条记录。当然,这样做会使得ES做大量的排序运算工作,效率比较差。
(2)Range Aggregation
自定义区间范围的聚合,我们可以自己手动地划分区间,ES会根据划分出来的区间将数据分配不同的区间上去。下面将全校学生按照年龄划分为5个区间段:16岁以下、16~18、19~21、22~24、24岁以上,要求统计每一个年龄段内的学生数。
curl -XPOST "192.168.1.101:9200/student/student/_search?search_type=count" -d
'
{
"aggs": {
"range_age": {
"range": {
"field": "age",
"ranges": [
{
"to": 15
},
{
"from": "16",
"to": "18"
},
{
"from": "19",
"to": "21"
},
{
"from": "22",
"to": "24"
},
{
"from": "25"
}
]
}
}
}
}
'
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
(3)Date Range Aggregation
时间区间聚合专门针对date类型的字段,它与Range Aggregation的主要区别是其可以使用时间运算表达式。主要包括+(加法)运算、-(减法)运算和/(四舍五入)运算,每种运算都可以作用在不同的时间域上面,下面是一些时间运算表达式示例。
- now+10y:表示从现在开始的第10年。
- now+10M:表示从现在开始的第10个月。
- 1990-01-10||+20y:表示从1990-01-01开始后的第20年,即2010-01-01。
- now/y:表示在年位上做舍入运算。今天是2015-09-06,则这个表达式计算结果为:2015-01-01。说好的rounding运算呢?结果是做的flooring运算,不知道为啥,估计是我理解错了-_-!!
下面查询25年前及更早出生的学生数。
curl -XPOST "192.168.1.101:9200/student/student/_search?search_type=count" -d
'
{
"aggs": {
"range_age": {
"date_range": {
"field": "birthday",
"ranges": [
{
"to": "now-25y"
}
]
}
}
}
}
'
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
(4)Histogram Aggregation
直方图聚合,它将某个number类型字段等分成n份,统计落在每一个区间内的记录数。它与前面介绍的Range聚合非常像,只不过Range可以任意划分区间,而Histogram做等间距划分。既然是等间距划分,那么参数里面必然有距离参数,就是interval参数。下面按学生年龄统计各个年龄段内的学生数量,分隔距离为2岁。
curl -XPOST "192.168.1.101:9200/student/student/_search?search_type=count" -d
'
{
"aggs": {
"histogram_age": {
"histogram": {
"field": "age",
"interval": 2, // 距离为2
"min_doc_count": 1 // 只返回记录数量大于等于1的区间
}
}
}
}
'
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
(5)Date Histogram Aggregation
时间直方图聚合,专门对时间类型的字段做直方图聚合。这种需求是比较常用见得的,我们在统计时,通常就会按照固定的时间断(1个月或1年等)来做统计。下面统计学校中同一年出生的学生数。
curl -XPOST "192.168.1.101:9200/student/student/_search?search_type=count" -d
'
{
"aggs": {
"data_histogram_birthday": {
"date_histogram": {
"field": "birthday",
"interval": "year", // 按年统计
"format": "yyyy" // 返回结果的key的格式
}
}
}
}
'
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
返回结果如下,可以看到由于上面的”format”: “yyyy”,所以返回的key_as_string只返回年的信息。
{
"buckets": [
{
"key_as_string": "1985",
"key": 473385600000,
"doc_count": 1
},
{
"key_as_string": "1986",
"key": 504921600000,
"doc_count": 1
},
{
"key_as_string": "1987",
"key": 536457600000,
"doc_count": 1
},
{
"key_as_string": "1989",
"key": 599616000000,
"doc_count": 1
},
{
"key_as_string": "1990",
"key": 631152000000,
"doc_count": 1
},
{
"key_as_string": "1991",
"key": 662688000000,
"doc_count": 1
},
{
"key_as_string": "1992",
"key": 694224000000,
"doc_count": 1
},
{
"key_as_string": "1994",
"key": 757382400000,
"doc_count": 1
}
]
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
(6)Missing Aggregation
值缺损聚合,它是一类单桶聚合,也就是最终只会产生一个“桶”。下面统计学生信息中地址栏缺损的记录数量。由于只有学号为6的孙尚香的地址缺损,所以统计值为1。
curl -XPOST "192.168.1.101:9200/student/student/_search?search_type=count" -d
'
{
"aggs": {
"missing_address": {
"missing": {
"field": "address"
}
}
}
}
'
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
1.3 嵌套使用
前面已经说过,聚合操作是可以嵌套使用的。通过嵌套,可以使得metric类型的聚合操作作用在每一“桶”上。我们可以使用ES的嵌套聚合操作来完成稍微复杂一点的统计功能。下面统计每一个班里最大的年龄值。
curl -XPOST "192.168.1.101:9200/student/student/_search?search_type=count" -d
'
{
"aggs": {
"missing_address": {
"terms": {
"field": "classNo"
},
"aggs": { // 在这里嵌套新的子聚合
"max_age": {
"max": { // 使用max聚合
"field": "age"
}
}
}
}
}
}
'
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
返回结果如下:
{
"buckets": [
{
"key": "1", // key是班级号
"doc_count": 3, // 每个班级内的人数
"max_age": { // 这里是我们指定的子聚合名
"value": 24, // 每班的年龄值
"value_as_string": "24.0"
}
},
{
"key": "2",
"doc_count": 3,
"max_age": {
"value": 23,
"value_as_string": "23.0"
}
},
{
"key": "3",
"doc_count": 1,
"max_age": {
"value": 20,
"value_as_string": "20.0"
}
},
{
"key": "4",
"doc_count": 1,
"max_age": {
"value": 16,
"value_as_string": "16.0"
}
}
]
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
2. 总结
本文介绍了ES中的一些常用的聚合API的使用,包括metric、bucketing以及它们的嵌套使用方法。掌握了这些API就可以完成简单的数据统计功能,更多的API详见官方文档。前面的博客中都是介绍了ES的Rest API,接下来的文章中将会介绍Java API的使用,使用Java API可以实现前面介绍的所有API的功能。
http://blog.csdn.net/xialei199023/article/details/48298635
相关推荐
Elasticsearch是一款强大的开源搜索引擎,它以分布式、实时、全文检索的特性而广受开发者欢迎。7.11版本是其历史上的一个重要版本,包含了多项改进和优化。在这个版本中,Elasticsearch提供了更稳定的性能、更丰富的...
**Elasticsearch——分布式搜索引擎开发详解** Elasticsearch(简称ES)是一款强大的开源分布式全文搜索引擎,基于Lucene库,但提供了更高级别的API和管理功能。它被广泛应用于日志分析、实时监控、数据搜索等领域...
Elasticsearch 6.8.7 是一个高度可扩展的开源全文搜索引擎,它设计用于提供快速、近实时的搜索和分析能力。这个压缩包“elasticsearch-6.8.7.tar.gz”包含了运行Elasticsearch 6.8.7所需的所有文件。Elasticsearch...
Elasticsearch(简称ES)是一款开源的、基于Lucene的全文搜索引擎,被广泛应用于大数据分析、日志收集、实时监控等多种场景。它的核心特性包括分布式、RESTful接口、自动分词、高可扩展性以及实时分析。 **一、...
Elasticsearch是一款强大的开源搜索引擎,广泛应用于数据检索、分析和实时监控。7.11版本是其稳定版本之一,提供了诸多改进和新特性,旨在提高搜索性能和用户体验。本文将根据提供的压缩包文件“elasticsearch中文...
Elasticsearch是一款强大的开源搜索引擎,基于Lucene构建,提供了分布式、实时、可扩展的数据搜索和分析能力。它广泛应用于日志分析、实时监控、信息检索等多个领域,其灵活性和高性能使其成为现代大数据解决方案的...
Elasticsearch 是一个流行的、高性能的全文搜索引擎,常用于大数据分析和实时数据分析。它基于 Lucene 库,提供了分布式、可扩展、近实时的数据存储和检索能力。在这个场景中,我们关注的是一个名为 "accounts.json...
Elasticsearch,作为一款强大的全文搜索引擎,其工作原理在数据存储、检索以及分析领域具有深远影响。这款开源的搜索引擎基于Lucene构建,以其分布式、实时、可扩展的特性深受开发者喜爱。本文将深入探讨Elastic...
**开源分布式RESTful搜索引擎——Elasticsearch** Elasticsearch是一个高度可扩展的开源全文搜索和分析引擎,设计用于处理大量数据并提供实时响应。它的核心功能是能够快速地对存储在集群中的海量数据进行索引、...
Elasticsearch(简称ES)是一个开源的全文搜索引擎,基于Lucene构建,设计用于分布式、实时的数据存储和搜索。它不仅能够提供高效的全文检索功能,还能处理海量数据的聚合分析。在大数据和实时分析领域,Elastic...
然而,Elasticsearch并不使用SQL作为查询语言,而是使用自己的DSL(Domain Specific Language)——Elasticsearch Query DSL。这种DSL以JSON格式表示,提供了丰富的查询和过滤选项。因此,要将MyBatis的风格应用到...
2. **Elasticsearch**:Elasticsearch是一个分布式、开源的搜索引擎,主要用于全文检索,但也可以用于结构化和非结构化数据的实时分析。它使用JSON文档格式,并基于Lucene构建,提供近实时的搜索和分析能力。 3. **...
在信息技术领域,Elasticsearch是一种广泛使用的开源全文搜索引擎,以其高效、灵活和强大的搜索功能而受到赞誉。它基于Lucene库,但提供了更高层次的抽象接口,使得数据索引和检索变得更加便捷。在Elasticsearch中,...
在现代大数据处理领域,Elasticsearch(简称ES)已经成为一款不可或缺的搜索引擎和数据分析工具。它以其强大的全文搜索、实时分析以及分布式特性,赢得了广大开发者和数据分析师的青睐。本文将结合Jupyter Notebook...