转载自:http://xiahouzuoxin.github.io/notes
程序及分析
/*
* FileName : fft2.cpp
* Author : xiahouzuoxin @163.com
* Version : v1.0
* Date : Wed 30 Jul 2014 09:42:12 PM CST
* Brief :
*
* Copyright (C) MICL,USTB
*/
#include <iostream>
#include <cv.h>
#include <highgui.h>
#include "imgproc/imgproc.hpp"
using namespace std;
using namespace cv;
int main(int argc, char *argv[])
{
if (argc < 2) {
cout<<"Usage:./fft2 [image name]"<<endl;
return -1;
}
// Read as grayscale image
Mat image = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE);
if (!image.data) {
cout << "Read image error"<<endl;
return -1;
}
Mat padded;
int m = getOptimalDFTSize(image.rows); // Return size of 2^x that suite for FFT
int n = getOptimalDFTSize(image.cols);
// Padding 0, result is @padded
copyMakeBorder(image, padded, 0, m-image.rows, 0, n-image.cols, BORDER_CONSTANT, Scalar::all(0));
// Create planes to storage REAL part and IMAGE part, IMAGE part init are 0
Mat planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F) };
Mat complexI;
merge(planes, 2, complexI);
dft(complexI, complexI);
// compute the magnitude and switch to logarithmic scale
split(complexI, planes);
magnitude(planes[0], planes[0], planes[1]);
Mat magI = planes[0];
// => log(1+sqrt(Re(DFT(I))^2+Im(DFT(I))^2))
magI += Scalar::all(1);
log(magI, magI);
// crop the spectrum
magI = magI(Rect(0, 0, magI.cols & (-2), magI.rows & (-2)));
Mat _magI = magI.clone();
normalize(_magI, _magI, 0, 1, CV_MINMAX);
// rearrange the quadrants of Fourier image so that the origin is at the image center
int cx = magI.cols/2;
int cy = magI.rows/2;
Mat q0(magI, Rect(0,0,cx,cy)); // Top-Left
Mat q1(magI, Rect(cx,0,cx,cy)); // Top-Right
Mat q2(magI, Rect(0,cy,cx,cy)); // Bottom-Left
Mat q3(magI, Rect(cx,cy,cx,cy)); // Bottom-Right
// exchange Top-Left and Bottom-Right
Mat tmp;
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
// exchange Top-Right and Bottom-Left
q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2);
normalize(magI, magI, 0, 1, CV_MINMAX);
imshow("Input image", image);
imshow("Spectrum magnitude before shift frequency", _magI);
imshow("Spectrum magnitude after shift frequency", magI);
waitKey();
return 0;
}
本程序的作用是:将图像从空间域转换到频率域,并绘制频域图像。
-
二维图像的DFT(离散傅里叶变换),
图像的频域表示的是什么含义呢?又有什么用途呢?图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。图像的边缘部分是突变部分,变化较快,因此反应在频域上是高频分量;图像的噪声大部分情况下是高频部分;图像大部分平缓的灰度变化部分则为低频分量。也就是说,傅立叶变换提供另外一个角度来观察图像,可以将图像从灰度分布转化到频率分布上来观察图像的特征。
频域在图像处理中,就我所知的用途主要在两方面:图像压缩和图像去噪。关于这两点将在下面给出图片DFT的变换结果后说明。
有关DFT的更多性质请参考胡广书教授的《数字信号处理》教材。
-
请注意读图片的函数与之前有所不同:
Mat image = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE);
CV_LOAD_IMAGE_GRAYSCALE
参数表示将原图像转换为灰度图后读入,这是因为后面的DFT变换都是基于二维信号的,而彩色图像是三维信号。当然,也可以对RGB每一通道都进行DFT运算。 -
DFT算法的原理要求输入信号的长度最好为2^n,这样可以使用快速傅里叶变换算法(FFT算法)进行加速。所以程序中使用
copyMakeBorder(image, padded, 0, m-image.rows, 0, n-image.cols, BORDER_CONSTANT, Scalar::all(0));
填充0使横纵长度都为2^n。
对于一维信号,原DFT直接运算的复杂度是O(N^2),而快速傅里叶变换的复杂度降低到O(Nlog2(N)),假设N为512,足足提高了512/9≈57倍。
-
由DFT的性质知,输入为实信号(图像)的时候,频域输出为复数,因此将频域信息分为幅值和相位。频域的幅值高的代表高频分量,幅值低的地方代表低频分量,因此程序中使用
// => log(1+sqrt(Re(DFT(I))^2+Im(DFT(I))^2)) magI += Scalar::all(1); log(magI, magI); // crop the spectrum magI = magI(Rect(0, 0, magI.cols & (-2), magI.rows & (-2))); Mat _magI = magI.clone(); normalize(_magI, _magI, 0, 1, CV_MINMAX);
进行log幅值计算及归一化幅值(归一化目的主要是方便将频域通过图像的形式进行显示)。
-
关于频域中心平移:将图像的高频分量平移到图像的中心,便于观测。
int cx = magI.cols/2; int cy = magI.rows/2; Mat q0(magI, Rect(0,0,cx,cy)); // Top-Left Mat q1(magI, Rect(cx,0,cx,cy)); // Top-Right Mat q2(magI, Rect(0,cy,cx,cy)); // Bottom-Left Mat q3(magI, Rect(cx,cy,cx,cy)); // Bottom-Right // exchange Top-Left and Bottom-Right Mat tmp; q0.copyTo(tmp); q3.copyTo(q0); tmp.copyTo(q3); // exchange Top-Right and Bottom-Left q1.copyTo(tmp); q2.copyTo(q1); tmp.copyTo(q2);
其原理就是将左上角的频域和右下角的互换,右上角和左下角互换。
请注意:频域点和空域点的坐标没有一一对应的关系,两者的关系只是上面的DFT公式所见到的。
-
本程序因为使用到图像处理相关的函数,所以包含了头文件
imgproc/imgproc.hpp
,该文件位于OpenCV安装目录的include/opencv2/目录下,在编写Makefile时也要增加相关的头文件路径和库,本程序使用的Makefile如下:TARG=fft2 SRC=fft2.cpp LIB=-L/usr/local/lib/ INC=-I/usr/local/include/opencv/ -I/usr/local/include/opencv2 CFLAGS= $(TARG):$(SRC) g++ -g -o $@ ${CFLAGS} $(LIB) $(INC) \ -lopencv_core -lopencv_highgui -lopencv_imgproc \ $^ .PHONY:clean clean: -rm $(TARG) tags -f
其中Makefile中的\表示换行(反斜杠后不能再有任何字符,包括空格),如上库增加了
-lopencv_imgproc
,头文件路径增加了-I/usr/local/include/opencv2
。
效果
-
上图从左到右分别是:原始灰度图(我大爱的杨过啊)、频域平移前的频域图像、频域中心平移后的频域图像。
-
提到图像频域变换的用途:压缩和去噪。压缩的原理就是在频域中,大部分频域的值为0(或接近0,可以进行有损压缩,如jpeg图像),只要压缩频域中的少数非0值即可达到图片压缩的目的。去噪则是通过频域的滤波实现,因为噪声大部分情况下体现为高频信号,使用低通滤波器即可滤除高频噪声(当然,也会带来损失,那就是边缘会变得模糊(之前说过,边缘也是高频信号))。
相关推荐
标题 "DFT.rar_opencv 频域_图像 频域_图像频域opencv" 涉及的核心知识点是使用OpenCV库在VC++6.0集成开发环境中执行离散傅立叶变换(Discrete Fourier Transform, DFT)来处理JPEG图像。OpenCV是一个强大的开源...
在本项目中,“基于Opencv和MFC的图像空域频域作业”是一个利用OpenCV库和Microsoft Foundation Classes (MFC)在Visual Studio 2008环境下开发的图像处理应用。该应用专注于图像处理中的两个核心领域:空域处理和...
### OpenCV中的图像小波变换和逆变换 #### 一、引言 在图像处理领域,小波变换是一种非常强大的工具,它可以帮助我们提取图像的关键特征,并进行多种图像处理任务,如去噪、压缩、边缘检测等。OpenCV库提供了丰富的...
OpenCV库是一个强大的计算机视觉和图像...了解和掌握如何使用OpenCV进行DFT变换对于图像处理和计算机视觉领域的开发者来说至关重要。通过深入学习和实践这些源代码,你可以更好地理解和利用DFT在实际问题中解决问题。
标题"**dft.rar_DFT_图像dft_图像dft实现_图像的dft变换**"表明,这是一个关于使用DFT进行图像处理的资源包,可能包含代码实现和理论讲解,用于理解和实现数字图像的傅立叶变换及其逆变换。 描述"**主要实现数字...
C 程序,在VS2015环境中调试成功,为了看到频域变换图像,需配置OpenCV, 并将运行模式设置为 Debug X64, 该程序附带一张实验图像,使用它做一次正变换(DFT2D),再做一次反变换(IDFT2D),还原为原始图像。...
通过以上步骤,`dft.cpp`文件应该能够实现基于OpenCV的傅里叶变换和低通滤波,从而有效地对图像进行频域滤波。这种技术广泛应用于图像去噪、图像平滑以及对图像特征的分析等场景。理解并熟练掌握这些概念和方法,...
这个"opencv+dft变换demo"项目展示了如何结合OpenCV、PyQt5和Matplotlib进行图像的离散傅立叶变换,从而理解和探索图像的频域特性。通过这个示例,开发者可以学习到图像处理的基础知识,以及如何在实际项目中结合...
标题中的"DFT傅里叶变换图片水印"指的是在图像处理领域中,使用离散傅里叶变换(Discrete Fourier Transform, DFT)对图像进行处理,并嵌入水印的技术。这种技术通常用于数字版权保护,通过在图像的频域(傅里叶变换...
opencv 图像截取 图像显示 图像变换 双线性 最邻近插值 图像缩放 opencv 图像截取 图像显示 图像变换 双线性 最邻近插值 图像缩放 opencv 图像截取 图像显示 图像变换 双线性 最邻近插值 图像缩放
离散余弦变换(DCT)与离散傅里叶变换(DFT)是数字信号处理和图像处理领域中的两种核心变换技术。...在OpenCV这样的库中实现这些变换,有助于加深对图像处理理论的理解,并为实际应用打下坚实基础。
本文主要介绍怎样使用opencv来对图片进行傅里叶变换,其核心函数是opencv自带的dft()。DFT这个技术手段是将空间域映射到频率域中去,在图像处理有着举足轻重的地位。这里我们只是得到其变换的结果并看看贫域图有什么...
本资料包“OpenCV-Python图像处理:仿射变换详解及案例.rar”聚焦于OpenCV库中的一种重要变换——仿射变换。通过Python语言,我们可以轻松地应用这种变换来对图像进行各种操作,如旋转、缩放、剪切等。 仿射变换是...
OpenCV库中的`cv2.dft()`函数用于执行离散傅里叶变换(DFT),它是傅里叶变换的一种实用形式,适用于有限的、离散的数据集,如数字图像。在进行DFT前,通常需要对图像进行填充,使其大小为2的幂,以优化计算效率。...
综上所述,"基于OPENCV和MFC的图像处理程序"是一个综合性的项目,涉及了图像处理的基础操作和用户界面设计。通过这个程序,用户可以直观地体验各种图像处理技术,对于学习和实践OpenCV与MFC的结合使用非常有帮助。
在本文中,我们将深入探讨离散傅里叶变换(DFT)及其在计算机视觉库OpenCV中的实现。DFT是一种重要的数学工具,广泛应用于信号处理、图像分析和计算机图形学等领域。OpenCV提供了高效的DFT函数,使得开发者能够轻松...
在计算机视觉领域,图像处理是一项基础且重要的任务。OpenCV(Open Source Computer Vision Library)是一个强大的开源库,专为图像处理和计算机视觉设计,广泛应用于各种项目,包括图像倾斜校正。本文将深入探讨...
离散傅里叶变换(Discrete Fourier Transform, DFT)是数字信号处理中的核心概念,特别是在计算机视觉领域,如OpenCV库中广泛应用。OpenCV是一个跨平台的计算机视觉库,它提供了丰富的函数来处理图像,其中包括对...
**标题解析:** "dft.rar_DFT_dft opencv_图像功率谱" 这个标题提到了几个关键概念:dft(离散傅里叶变换)、dft opencv(OpenCV库中的DFT实现)以及图像功率谱。标题表明这是一个关于如何使用OpenCV库在C++或Python...
- OpenCV是一个强大的计算机视觉库,提供了多种滤波器实现,包括离散傅里叶变换(DFT)和逆离散傅里叶变换(IDFT),这些都是实现频域滤波的基础操作。 - 在VS中,可以利用OpenCV的`cv::dft()`函数进行傅里叶变换...