一、 Android的内存机制
二、Android的内存溢出
三、万恶的static
四、都是线程惹的祸
五、超级大胖子Bitmap
六、行踪诡异的Cursor
七、其它要说的。
一、 Android的内存机制
Android的程序由Java语言编写,所以Android的内存管理与Java的内存管理相似。程序员通过new为对象分配内存,所有对象在java 堆内分配空间;然而对象的释放是由垃圾回收器来完成的。C/C++中的内存机制是“谁污染,谁治理”,java的就比较人性化了,给我们请了一个专门的清 洁工(GC)。
那么GC怎么能够确认某一个对象是不是已经被废弃了呢?Java采用了有向图的原理。Java将引用关系考虑为图的有向边,有向边从引用者指向引用对象。 线程对象可以作为有向图的起始顶点,该图就是从起始顶点开始的一棵树,根顶点可以到达的对象都是有效对象,GC不会回收这些对象。如果某个对象 (连通子图)与这个根顶点不可达(注意,该图为有向图),那么我们认为这个(这些)对象不再被引用,可以被GC回收。
二、Android的内存溢出
Android的内存溢出是如何发生的?
Android的虚拟机是基于寄存器的Dalvik,它的最大堆大小一般是16M,有的机器为24M。因此我们所能利用的内存空间是有限的。如果我们的内存占用超过了一定的水平就会出现OutOfMemory的错误。
为什么会出现内存不够用的情况呢?我想原因主要有两个:
由于我们程序的失误,长期保持某些资源(如Context)的引用,造成内存泄露,资源造成得不到释放。
保存了多个耗用内存过大的对象(如Bitmap),造成内存超出限制。
三、万恶的static
static是Java中的一个关键字,当用它来修饰成员变量时,那么该变量就属于该类,而不是该类的实例。所以用static修饰的变量,它的生命周期是很长的,如果用它来引用一些资源耗费过多的实例(Context的情况最多),这时就要谨慎对待了。
public class ClassName {
private static Context mContext;
//省略
}
以上的代码是很危险的,如果将Activity赋值到么mContext的话。那么即使该Activity已经onDestroy,但是由于仍有对象保存它的引用,因此该Activity依然不会被释放。
我们举Android文档中的一个例子。
private static Drawable sBackground;
@Override
protected void onCreate(Bundle state) {
super.onCreate(state);
TextView label = new TextView(this);
label.setText(“Leaks are bad”);
if (sBackground == null) {
sBackground = getDrawable(R.drawable.large_bitmap);
}
label.setBackgroundDrawable(sBackground);
setContentView(label);
}
sBackground, 是一个静态的变量,但是我们发现,我们并没有显式的保存Contex的引用,但是,当Drawable与View连接之后,Drawable就将View 设置为一个回调,由于View中是包含Context的引用的,所以,实际上我们依然保存了Context的引用。这个引用链如下:
Drawable->TextView->Context
所以,最终该Context也没有得到释放,发生了内存泄露。
如何才能有效的避免这种引用的发生呢?
第一,应该尽量避免static成员变量引用资源耗费过多的实例,比如Context。
第二、Context尽量使用Application Context,因为Application的Context的生命周期比较长,引用它不会出现内存泄露的问题。
第三、使用WeakReference代替强引用。比如可以使用WeakReference mContextRef;
该部分的详细内容也可以参考Android文档中Article部分。
四、都是线程惹的祸
线程也是造成内存泄露的一个重要的源头。线程产生内存泄露的主要原因在于线程生命周期的不可控。我们来考虑下面一段代码。
public class MyActivity extends Activity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
new MyThread().start();
}
private class MyThread extends Thread{
@Override
public void run() {
super.run();
//do somthing
}
}
}
这段代码很平常也很简单,是我们经常使用的形式。我们思考一个问题:假设MyThread的run函数是一个很费时的操作,当我们开启该线程后,将设备的 横屏变为了竖屏,一般情况下当屏幕转换时会重新创建Activity,按照我们的想法,老的Activity应该会被销毁才对,然而事实上并非如此。
由于我们的线程是Activity的内部类,所以MyThread中保存了Activity的一个引用,当MyThread的run函数没有结束时,MyThread是不会被销毁的,因此它所引用的老的Activity也不会被销毁,因此就出现了内存泄露的问题。
有些人喜欢用Android提供的AsyncTask,但事实上AsyncTask的问题更加严重,Thread只有在run函数不结束时才出现这种内存 泄露问题,然而AsyncTask内部的实现机制是运用了ThreadPoolExcutor,该类产生的Thread对象的生命周期是不确定的,是应用 程序无法控制的,因此如果AsyncTask作为Activity的内部类,就更容易出现内存泄露的问题。
这种线程导致的内存泄露问题应该如何解决呢?
第一、将线程的内部类,改为静态内部类。
第二、在线程内部采用弱引用保存Context引用。
解决的模型如下:
public abstract class WeakAsyncTaskProgress, Result, WeakTarget> extends
AsyncTaskProgress, Result> {
protected WeakReference mTarget;
public WeakAsyncTask(WeakTarget target) {
mTarget = new WeakReference(target);
}
@Override
protected final void onPreExecute() {
final WeakTarget target = mTarget.get();
if (target != null) {
this.onPreExecute(target);
}
}
@Override
protected final Result doInBackground(Params… params) {
final WeakTarget target = mTarget.get();
if (target != null) {
return this.doInBackground(target, params);
} else {
return null;
}
}
@Override
protected final void onPostExecute(Result result) {
final WeakTarget target = mTarget.get();
if (target != null) {
this.onPostExecute(target, result);
}
}
protected void onPreExecute(WeakTarget target) {
// No default action
}
protected abstract Result doInBackground(WeakTarget target, Params… params);
protected void onPostExecute(WeakTarget target, Result result) {
// No default action
}
}
事实上,线程的问题并不仅仅在于内存泄露,还会带来一些灾难性的问题。由于本文讨论的是内存问题,所以在此不做讨论。
由于51cto不让我一次传完,说我的字数太多了,所以分开传了。
五、超级大胖子Bitmap
可以说出现OutOfMemory问题的绝大多数人,都是因为Bitmap的问题。因为Bitmap占用的内存实在是太多了,它是一个“超级大胖子”,特别是分辨率大的图片,如果要显示多张那问题就更显著了。
如何解决Bitmap带给我们的内存问题?
第一、及时的销毁。
虽然,系统能够确认Bitmap分配的内存最终会被销毁,但是由于它占用的内存过多,所以很可能会超过java堆的限制。因此,在用完Bitmap时,要 及时的recycle掉。recycle并不能确定立即就会将Bitmap释放掉,但是会给虚拟机一个暗示:“该图片可以释放了”。
第二、设置一定的采样率。
有时候,我们要显示的区域很小,没有必要将整个图片都加载出来,而只需要记载一个缩小过的图片,这时候可以设置一定的采样率,那么就可以大大减小占用的内存。如下面的代码:
private ImageView preview;
BitmapFactory.Options options = new BitmapFactory.Options();
options.inSampleSize = 2; //图片宽高都为原来的二分之一,即图片为原来的四分之一
Bitmap bitmap = BitmapFactory.decodeStream(cr.openInputStream(uri), null, options);
preview.setImageBitmap(bitmap);
第三、巧妙的运用软引用(SoftRefrence)
有些时候,我们使用Bitmap后没有保留对它的引用,因此就无法调用Recycle函数。这时候巧妙的运用软引用,可以使Bitmap在内存快不足时得到有效的释放。如下例:
private class MyAdapter extends BaseAdapter {
private ArrayList> mBitmapRefs = new ArrayList>();
private ArrayList mValues;
private Context mContext;
private LayoutInflater mInflater;
MyAdapter(Context context, ArrayList values) {
mContext = context;
mValues = values;
mInflater = (LayoutInflater) context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
}
public int getCount() {
return mValues.size();
}
public Object getItem(int i) {
return mValues.get(i);
}
public long getItemId(int i) {
return i;
}
public View getView(int i, View view, ViewGroup viewGroup) {
View newView = null;
if(view != null) {
newView = view;
} else {
newView =(View)mInflater.inflate(R.layout.image_view, false);
}
Bitmap bitmap = BitmapFactory.decodeFile(mValues.get(i).fileName);
mBitmapRefs.add(new SoftReference(bitmap)); //此处加入ArrayList
((ImageView)newView).setImageBitmap(bitmap);
return newView;
}
}
六、行踪诡异的Cursor
Cursor是Android查询数据后得到的一个管理数据集合的类,正常情况下,如果查询得到的数据量较小时不会有内存问题,而且虚拟机能够保证Cusor最终会被释放掉。
然而如果Cursor的数据量特表大,特别是如果里面有Blob信息时,应该保证Cursor占用的内存被及时的释放掉,而不是等待GC来处理。并且 Android明显是倾向于编程者手动的将Cursor close掉,因为在源代码中我们发现,如果等到垃圾回收器来回收时,会给用户以错误提示。
所以我们使用Cursor的方式一般如下:
Cursor cursor = null;
try {
cursor = mContext.getContentResolver().query(uri,null, null,null,null);
if(cursor != null) {
cursor.moveToFirst();
//do something
}
} catch (Exception e) {
e.printStackTrace();
} finally {
if (cursor != null) {
cursor.close();
}
}
有一种情况下,我们不能直接将Cursor关闭掉,这就是在CursorAdapter中应用的情况,但是注意,CursorAdapter在Acivity结束时并没有自动的将Cursor关闭掉,因此,你需要在onDestroy函数中,手动关闭。
@Override
protected void onDestroy() {
if (mAdapter != null && mAdapter.getCurosr() != null) {
mAdapter.getCursor().close();
}
super.onDestroy();
}
CursorAdapter中的changeCursor函数,会将原来的Cursor释放掉,并替换为新的Cursor,所以你不用担心原来的Cursor没有被关闭。
你可能会想到使用Activity的managedQuery来生成Cursor,这样Cursor就会与Acitivity的生命周期一致了,多么完美的解决方法!然而事实上managedQuery也有很大的局限性。
managedQuery生成的Cursor必须确保不会被替换,因为可能很多程序事实上查询条件都是不确定的,因此我们经常会用新查询的Cursor来替换掉原先的Cursor。因此这种方法适用范围也是很小。
七、其它要说的。
其实,要减小内存的使用,其实还有很多方法和要求。比如不要使用整张整张的图,尽量使用9path图片。Adapter要使用convertView等等,好多细节都可以节省内存。这些都需要我们去挖掘,谁叫Android的内存不给力来着。
欢迎转载:http://www.yinqisen.cn/blog-316.html
分享到:
相关推荐
Android内存优化是提升应用性能和用户体验的关键因素,尤其是在防止Out Of Memory (OOM)错误方面。本文将深入探讨Android内存管理的基础、内存优化策略、Bitmap的使用及管理、内存泄漏的原因和解决方案,以及如何...
- `图片下载及内存优化`可能是包含实际代码实现的文件,包括图片下载类、内存缓存机制以及防止OOM的逻辑。 通过对这些知识点的实践和深入理解,开发者可以构建出更加健壮、性能优秀的Android应用,同时提高用户...
1. Android内存管理:Android应用程序运行在一个受限的内存环境中,每个应用都有一个由Dalvik虚拟机管理的内存预算。当应用尝试分配的内存超过这个预算时,就会触发OutOfMemoryError。 2. OutOfMemoryError:这是一...
综上所述,解决Android加载图片出现的OOM问题需要综合运用各种策略,包括优化图片加载、缓存管理、使用合适的图片库以及合理地管理生命周期。只有这样,才能在保证用户体验的同时,避免因图片处理引发的内存问题。
【深入探索Android内存优化1】 Android内存优化是开发者必须掌握的关键技能之一,它涉及到应用程序的稳定性和用户体验。本文将深入探讨内存优化的相关概念、工具、管理机制以及常见问题,帮助开发者构建一个完整的...
在Android中,LRUCache可以用于图片缓存,避免每次都重新加载图片,从而减少内存消耗。 三、实现LRUCache 1. 创建自定义LRUCache 首先,我们需要创建一个继承自`java.util.LinkedHashMap`的类,重写`size()`和`...
2. **内存优化策略**: - **Bitmap的优化**:Bitmap对象占用了大量内存,应合理使用` BitmapFactory.Options `进行解码,限制大小并使用内存缓存。 - **使用软引用和弱引用**:通过使用SoftReference和...
本文将深入探讨如何对ListView进行内存优化,确保10M级别的图片加载时,应用依然能保持流畅运行,避免内存溢出和线程阻塞。 首先,理解内存溢出(OOM,Out of Memory)的原因至关重要。当应用程序请求的内存超过...
在Android开发中,内存管理是至关重要的,尤其是对于那些需要展示大量数据的界面,比如瀑布流布局...结合现代的Android开发库和最佳实践,我们可以有效地管理内存,避免出现OOM异常,为用户提供流畅的用户体验。
本文将深入探讨Android Bitmap内存限制以及如何避免OOM错误。 首先,我们需要理解引发上述错误的原因。当Android系统尝试分配一块超过其当前可用内存大小的内存时,会抛出`java.lang.OutOfMemoryError: bitmap size...
为了解决这个问题,开发者需要深入理解Android内存管理机制,并采取一系列优化策略。以下是一些关于如何解决Android OOM的关键知识点: 1. **Android内存模型**: - Dalvik/ART虚拟机:Android早期采用Dalvik,...
#### 一、Android内存管理机制概述 在Android中,每个应用都有自己的独立进程,并且每个进程的内存都是相互隔离的。Android操作系统为每个进程分配了最大可用内存,即所谓的“Dalvik Heap Size”,默认大小通常为16...
Android内存管理 Android设备的内存限制相对较小,因此开发者需要特别注意内存使用。每个Android应用都有自己的Dalvik或ART虚拟机实例,分配有固定大小的内存堆。当堆内存满时,新对象无法创建,从而引发OOM异常。 ...
1. **Android内存机制**: - Android系统为每个应用程序分配了一定量的内存,不同版本的Android系统分配的内存大小不同。 - 当应用占用的内存超过分配的阈值时,就会触发垃圾回收(Garbage Collection, GC),回收...
总结来说,解决Android中的图片加载与OOM问题,开发者需要采用合适的图片加载库,如Android-Universal-Image-Loader,利用其提供的内存和磁盘缓存机制、图片解码策略以及异步加载等功能,来优化图片处理过程,提升...
以下是一些处理Android Bitmap以避免OOM的策略: 1. **适当尺寸的Bitmap**:首先,确保只加载应用程序实际需要的图像尺寸。通过使用`BitmapFactory.Options`的`inSampleSize`参数,可以缩小图像的大小。例如,如果...
在Android开发中,图片的处理是一项非常重要的任务,因为不当的图片加载和内存管理往往会...通过深入理解并实践这些源码,开发者可以提升自己在Android图像处理和内存优化方面的技能,打造更流畅、用户体验更好的应用。
然而,如果不合理设计和优化,引导页可能会引发内存溢出(Out Of Memory,简称OOM)问题,导致应用崩溃。针对这个问题,我们需要对引导页进行优化,确保其在不同设备上稳定运行。 首先,我们要理解为什么会发生OOM...
本压缩包包含的是一个Android应用源码,专门针对图片下载和内存优化进行设计,以防止出现OOM问题。以下是关于这个主题的详细知识: 1. 图片下载: - 使用异步加载:在Android中,通常使用异步任务或者网络库(如...