Java虚拟机类加载过程是把Class类文件加载到内存,并对Class文件中的数据进行校验、转换解析和初始化,最终形成可以被虚拟机直接使用的java类型的过程。
在加载阶段,java虚拟机需要完成以下3件事:
a.通过一个类的全限定名来获取定义此类的二进制字节流。
b.将定义类的二进制字节流所代表的静态存储结构转换为方法区的运行时数据结构。
c.在java堆中生成一个代表该类的java.lang.Class对象,作为方法区数据的访问入口。
Java虚拟机的类加载是通过类加载器实现的, Java中的类加载器体系结构如下:
(1).BootStrap ClassLoader:启动类加载器,负责加载存放在%JAVA_HOME%\lib目录中的,或者通被-Xbootclasspath参数所指定的路径中的,并且被java虚拟机识别的(仅按照文件名识别,如rt.jar,名字不符合的类库,即使放在指定路径中也不会被加载)类库到虚拟机的内存中,启动类加载器无法被java程序直接引用。
(2).Extension ClassLoader:扩展类加载器,由sun.misc.Launcher$ExtClassLoader实现,负责加载%JAVA_HOME%\lib\ext目录中的,或者被java.ext.dirs系统变量所指定的路径中的所有类库,开发者可以直接使用扩展类加载器。
(3).Application ClassLoader:应用程序类加载器,由sun.misc.Launcher$AppClassLoader实现,负责加载用户类路径classpath上所指定的类库,是类加载器ClassLoader中的getSystemClassLoader()方法的返回值,开发者可以直接使用应用程序类加载器,如果程序中没有自定义过类加载器,该加载器就是程序中默认的类加载器。
注意:上述三个JDK提供的类加载器虽然是父子类加载器关系,但是没有使用继承,而是使用了组合关系。
从JDK1.2开始,java虚拟机规范推荐开发者使用双亲委派模式(ParentsDelegation Model)进行类加载,其加载过程如下:
(1).如果一个类加载器收到了类加载请求,它首先不会自己去尝试加载这个类,而是把类加载请求委派给父类加载器去完成。
(2).每一层的类加载器都把类加载请求委派给父类加载器,直到所有的类加载请求都应该传递给顶层的启动类加载器。
(3).如果顶层的启动类加载器无法完成加载请求,子类加载器尝试去加载,如果连最初发起类加载请求的类加载器也无法完成加载请求时,将会抛出ClassNotFoundException,而不再调用其子类加载器去进行类加载。
双亲委派 模式的类加载机制的优点是java类它的类加载器一起具备了一种带优先级的层次关系,越是基础的类,越是被上层的类加载器进行加载,保证了java程序的稳定运行。双亲委派模式的实现:
- protectedsynchronizedClass<?>loadClass(Stringname,Booleanresolve)throwsClassNotFoundException{
- Classc=findLoadedClass(name);
- if(c==null){
- try{
- if(parent!=null){
- c=parent.loadClass(name,false);
- }
- else{
- c=findBootstrapClassOrNull(name);
- }
- }catch(ClassNotFoundExceptione){
- }
- if(c==null){
- c=findClass(name);
- }
- }
- if(resolve){
- resolveClass(c);
- }
- returnc;
- }
protected synchronized Class<?> loadClass(String name, Boolean resolve) throws ClassNotFoundException{
//首先检查请求的类是否已经被加载过
Class c = findLoadedClass(name);
if(c == null){
try{
if(parent != null){//委派父类加载器加载
c = parent.loadClass(name, false);
}
else{//委派启动类加载器加载
c = findBootstrapClassOrNull(name);
}
}catch(ClassNotFoundException e){
//父类加载器无法完成类加载请求
}
if(c == null){//本身类加载器进行类加载
c = findClass(name);
}
}
if(resolve){
resolveClass(c);
}
return c;
}
若要实现自定义类加载器,只需要继承java.lang.ClassLoader类,并且重写其findClass()方法即可。java.lang.ClassLoader类的基本职责就是根据一个指定的类的名称,找到或者生成其对应的字节代码,然后从这些字节代码中定义出一个Java类,即java.lang.Class类的一个实例。除此之外,ClassLoader还负责加载Java应用所需的资源,如图像文件和配置文件等,ClassLoader中与加载类相关的方法如下:
方法
|
说明
|
getParent()
|
返回该类加载器的父类加载器。
|
loadClass(String name)
|
加载名称为二进制名称为name的类,返回的结果是java.lang.Class类的实例。
|
findClass(String name)
|
查找名称为name的类,返回的结果是java.lang.Class类的实例。
|
findLoadedClass(String name)
|
查找名称为name的已经被加载过的类,返回的结果是java.lang.Class类的实例。
|
resolveClass(Class<?> c)
|
链接指定的Java类。
|
注意:在JDK1.2之前,类加载尚未引入双亲委派模式,因此实现自定义类加载器时常常重写loadClass方法,提供双亲委派逻辑,从JDK1.2之后,双亲委派模式已经被引入到类加载体系中,自定义类加载器时不需要在自己写双亲委派的逻辑,因此不鼓励重写loadClass方法,而推荐重写findClass方法。
在Java中,任意一个类都需要由加载它的类加载器和这个类本身一同确定其在java虚拟机中的唯一性,即比较两个类是否相等,只有在这两个类是由同一个类加载器加载的前提之下才有意义,否则,即使这两个类来源于同一个Class类文件,只要加载它的类加载器不相同,那么这两个类必定不相等(这里的相等包括代表类的Class对象的equals()方法、isAssignableFrom()方法、isInstance()方法和instanceof关键字的结果)。例子代码如下:
- packagecom.test;
- publicclassClassLoaderTest{
- publicstaticvoidmain(String[]args)throwsException{
- ClassLoadermyClassLoader=newClassLoader(){
- protectedClass<?>findClass(Stringname)throwsClassNotFoundException{
- Stringfilename=name.substring(name.lastIndexOf(“.”)+1)+“.class”;
- InputStreamin=getClass().getResourceAsStream(filename);
- if(in==null){
- throwRuntimeException(“Couldnotfoundclassfile:”+filename);
- }
- byte[]b=newbyte[in.available()];
- returndefineClass(name,b,0,b.length);
- }catch(IOExceptione){
- thrownewClassNotFoundException(name);
- }
- };
- Objectobj=myClassLoader.loadClass(“com.test.ClassLoaderTest”).newInstance();
- System.out.println(obj.getClass());
- System.out.println(objinstanceofcom.test.ClassLoaderTest);
- }
- }
package com.test;
public class ClassLoaderTest {
public static void main(String[] args)throws Exception{
//匿名内部类实现自定义类加载器
ClassLoader myClassLoader = new ClassLoader(){
protected Class<?> findClass(String name)throws ClassNotFoundException{
//获取类文件名
String filename = name.substring(name.lastIndexOf(“.”) + 1) + “.class”;
InputStream in = getClass().getResourceAsStream(filename);
if(in == null){
throw RuntimeException(“Could not found class file:” + filename);
}
byte[] b = new byte[in.available()];
return defineClass(name, b, 0, b.length);
}catch(IOException e){
throw new ClassNotFoundException(name);
}
};
Object obj = myClassLoader.loadClass(“com.test.ClassLoaderTest”).newInstance();
System.out.println(obj.getClass());
System.out.println(obj instanceof com.test. ClassLoaderTest);
}
}
输出结果如下:
com.test.ClassLoaderTest
false
之所以instanceof会返回false,是因为com.test.ClassLoaderTest类默认使用Application ClassLoader加载,而obj是通过自定义类加载器加载的,类加载不相同,因此不相等。
类加载器双亲委派模型是从JDK1.2以后引入的,并且只是一种推荐的模型,不是强制要求的,因此有一些没有遵循双亲委派模型的特例:
(1).在JDK1.2之前,自定义类加载器都要覆盖loadClass方法去实现加载类的功能,JDK1.2引入双亲委派模型之后,loadClass方法用于委派父类加载器进行类加载,只有父类加载器无法完成类加载请求时才调用自己的findClass方法进行类加载,因此在JDK1.2之前的类加载的loadClass方法没有遵循双亲委派模型,因此在JDK1.2之后,自定义类加载器不推荐覆盖loadClass方法,而只需要覆盖findClass方法即可。
(2).双亲委派模式很好地解决了各个类加载器的基础类统一问题,越基础的类由越上层的类加载器进行加载,但是这个基础类统一有一个不足,当基础类想要调用回下层的用户代码时无法委派子类加载器进行类加载。为了解决这个问题JDK引入了ThreadContext线程上下文,通过线程上下文的setContextClassLoader方法可以设置线程上下文类加载器。
JavaEE只是一个规范,sun公司只给出了接口规范,具体的实现由各个厂商进行实现,因此JNDI,JDBC,JAXB等这些第三方的实现库就可以被JDK的类库所调用。线程上下文类加载器也没有遵循双亲委派模型。
(3).近年来的热码替换,模块热部署等应用要求不用重启java虚拟机就可以实现代码模块的即插即用,催生了OSGi技术,在OSGi中类加载器体系被发展为网状结构。OSGi也没有完全遵循双亲委派模型。
分享到:
相关推荐
Java虚拟机类加载机制及双亲委派模型
经典的java虚拟机类加载机制 看完后会有醍醐灌顶的感觉
虚拟机将描述类的数据从Class文件加载到内存,并对数据进行校验、准备、解析和初始化,终会形成可以被虚拟机使用的Java类型,这是一个虚拟机的类加载机制。Java中的类是动态加载的,只有在运行期间使用到该类的...
在《Java虚拟机类加载机制》一文中详细阐述了类加载的过程,并举了几个例子进行了简要分析,在文章的后留了一个悬念给各位,这里来揭开这个悬念。建议先看完《Java虚拟机类加载机制》这篇再来看这个,印象会比较深刻...
虚拟机把描述类的数据从Class文件中加载到内存,并对数据进行校验、转换解析和初始化,最终形成可被虚拟机直接使用的Java类型,这就是虚拟机加载机制。
Java类加载机制的原理是基于Java虚拟机的架构,Java虚拟机将Java类文件编译生成的.class文件加载到内存中,并将其转换为机器可执行的代码。类加载机制的过程可以分为三个阶段:加载、链接和初始化。 加载阶段:在...
Java的类加载机制遵循双亲委派模型,即当一个类加载器收到加载类的请求时,它首先会委托父类加载器去尝试加载,只有当父类加载器无法加载时,当前类加载器才会尝试自己加载。这种模型保证了Java核心库类的一致性和...
Java 动态类加载机制是 Java 虚拟机(JVM)的一种机制,允许在 Java 应用程序运行期间动态加载类文件,而不影响其他功能模块的正常运行。这种机制可以提高 Java 应用程序的灵活性和可扩展性。 Java 动态类加载机制...
JVM解释执行机制是Java虚拟机执行字节码的一种方式,其中解释器将Java字节码逐条转换成机器码并执行。 Java语言的跨平台特性得益于其编译后不是直接生成特定平台上的机器码,而是生成一种中间形式的字节码。Java源...
Java 动态类加载机制研究及应用是基于 Java 虚拟机(JV M)机制的,旨在实现 Java 应用程序中动态加载类文件,而不影响其他功能模块的正常运行。为了实现这个目标,需要对 Java 类加载器的体系结构、动态类加载机制...
什么是虚拟机类加载机制以及加载过程,以及类加载时机
这份规范涵盖了虚拟机的结构、字节码编译、字节码文件格式、类加载机制以及虚拟机指令集等多个关键领域。 **虚拟机结构** Java虚拟机的结构包括内存区域、执行引擎、类加载器系统等组件。内存区域主要分为堆、栈、...
Java类加载机制是Java程序运行的第一步,它对于理解Java虚拟机(JVM)的行为至关重要。类加载过程涉及到类的加载、链接(验证、准备、解析)、初始化等阶段,并且这一过程是由类加载器系统完成的。 #### 二、类加载...
1. 字节码加载:Java虚拟机首先加载字节码文件,然后对其进行解析和验证。 2. 字节码验证:Java虚拟机对字节码进行验证,检查其是否符合Java虚拟机的规范。 3. 字节码执行:Java虚拟机执行字节码,通过解释或编译来...
在性能优化方面,Java虚拟机实现了诸如垃圾收集(Garbage Collection)、动态编译(Just-In-Time, JIT)等机制。垃圾收集自动管理内存,避免程序员手动处理内存泄露问题;JIT编译则是在运行过程中将频繁执行的热点...
Java虚拟机规范还定义了类加载机制,即在JVM启动时或运行过程中动态加载类到内存中。类加载器在运行Java程序时按需加载类,这允许Java程序进行延迟加载,即仅在需要时才加载类,这有助于优化程序的启动时间和运行时...
它详尽地探讨了Java虚拟机的工作原理、内存管理、类加载机制、字节码执行以及性能优化等多个核心主题,旨在帮助开发者提升程序的运行效率和稳定性。 1. **Java虚拟机概述**:Java虚拟机是Java平台的核心组件,它...
1. **字节码与类加载机制**:Java程序编译后生成的是.class文件,里面包含的是字节码。JVM通过类加载器将这些字节码加载到内存中,进行验证、准备、解析和初始化等步骤,形成运行时的数据区。 2. **运行时数据区**...