`

spark snappy save text file

 
阅读更多
SQL context available as sqlContext.

scala> var myVar : String = "Foo"
myVar: String = Foo

scala> val myVal : String = "Foo"
myVal: String = Foo

scala> var myVar : String = "Foo1"
myVar: String = Foo1

scala> myVal="aa"
<console>:27: error: reassignment to val
         myVal="aa"
              ^

scala> myVal="aa";
<console>:27: error: reassignment to val
         myVal="aa";
              ^

scala> myVal="Foo";
<console>:27: error: reassignment to val
         myVal="Foo";
              ^

scala> myVar="jack"
myVar: String = jack

scala> var myVar = 10;
myVar: Int = 10

scala> val myVal = "Hello, Scala!";
myVal: String = Hello, Scala!

scala> val (myVar1: Int, myVar2: String) = Pair(40, "Foo")
myVar1: Int = 40
myVar2: String = Foo

scala> val jack: (myVar1: Int, myVar2: String) = Pair(40, "Foo")
<console>:1: error: ')' expected but ':' found.
       val jack: (myVar1: Int, myVar2: String) = Pair(40, "Foo")
                        ^

scala> val jack: (myVar1: Int, myVar2: String) = Pair(40, "Foo")
<console>:1: error: ')' expected but ':' found.
       val jack: (myVar1: Int, myVar2: String) = Pair(40, "Foo")
                        ^

scala> val (myVar1, myVar2) = Pair(40, "Foo")
myVar1: Int = 40
myVar2: String = Foo

scala> object Test{
     |    def main(args:Array[String]){
     |        var x = 10
     |        if(x Test
res0: Test.type = $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$Test$@63843e11

scala> Test
res1: Test.type = $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$Test$@63843e11

scala> Test.main("a")
<console>:28: error: type mismatch;
found   : String("a")
required: Array[String]
              Test.main("a")
                        ^

scala> Test.main(List.("a"))
<console>:1: error: identifier expected but '(' found.
       Test.main(List.("a"))
                      ^

scala> val arr = sc.parallelize(Array(("A",1),("B",2),("C",3)));
arr: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[0] at parallelize at <console>:27

scala> arr.flatmap(x=>(x._1+x_2)).foreach(println);
<console>:30: error: value flatmap is not a member of org.apache.spark.rdd.RDD[(String, Int)]
              arr.flatmap(x=>(x._1+x_2)).foreach(println);
                  ^

scala> arr.map(x=>(x._1+x_2)).foreach(println);
<console>:30: error: not found: value x_2
              arr.map(x=>(x._1+x_2)).foreach(println);
                               ^

scala> arr.map(x=>(x._1+x._2)).foreach(println);

scala> val arr = sc.parallelize(Array(("A",1),("B",2),("C",3)));
arr: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[2] at parallelize at <console>:27

scala> arr.map(x=>(x._1+x._2)).foreach(println);

scala> List("a","b").foreach(println);
a
b

scala> val arr = sc.parallelize(Array(("A",1),("B",2),("C",3)));
arr: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[4] at parallelize at <console>:27

scala> println(arr);
ParallelCollectionRDD[4] at parallelize at <console>:27

scala> arr.foreach(println);

scala> val arr=sc.parallelize(Array(("A",1),("B",2),("C",3)))
arr: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[5] at parallelize at <console>:27

scala> arr.flatmap(x=>(x._1+x._2)).foreach(println)
<console>:30: error: value flatmap is not a member of org.apache.spark.rdd.RDD[(String, Int)]
              arr.flatmap(x=>(x._1+x._2)).foreach(println)
                  ^

scala> val arr=sc.parallelize(Array(("A",1),("B",2),("C",3)))
arr: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[6] at parallelize at <console>:27

scala> arr.map(x=>(x._1+x._2)).foreach(println)

scala> arr.flatMap(x=>(x._1+x._2)).foreach(println)
                                                                               
scala> arr.flatMap(x=>(x._1+x._2)).foreach(println)

scala> arr.flatMap(x=>(x._1+x._2)).foreach(println)

scala> arr.map(x=>(x._1+","+x._2)).foreach(println)

scala> arr.first();
res16: (String, Int) = (A,1)

scala> arr.count()
res17: Long = 3                                                                

scala> val rdd = sc.parallelize(1,10,2);
<console>:27: error: too many arguments for method parallelize: (seq: Seq[T], numSlices: Int)(implicit evidence$1: scala.reflect.ClassTag[T])org.apache.spark.rdd.RDD[T]
         val rdd = sc.parallelize(1,10,2);
                                 ^

scala> val rdd = sc.parallelize(1 to 10,2);
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[12] at parallelize at <console>:27

scala> val reduceRDD = rdd.reduce(_ + _)
reduceRDD: Int = 55

scala> rdd.first()
res18: Int = 1

scala> rdd.count
res19: Long = 10                                                               

scala> val reduceRDD1 = rdd.reduce(_ - _)
reduceRDD1: Int = 15

scala> val countRDD = rdd.count()
countRDD: Long = 10

scala> val firstRDD = rdd.first()
firstRDD: Int = 1

scala>  val takeRDD = rdd.take(5)
takeRDD: Array[Int] = Array(1, 2, 3, 4, 5)

scala> val topRDD = rdd.top(3)  
topRDD: Array[Int] = Array(10, 9,

scala> val takeOrderedRDD = rdd.takeOrdered(3) 
takeOrderedRDD: Array[Int] = Array(1, 2, 3)

scala> println("func +: "+reduceRDD)
func +: 55

scala>     println("func -: "+reduceRDD1)
func -: 15

scala>     println("count: "+countRDD)
count: 10

scala>     println("first: "+firstRDD)
first: 1

scala>     println("take:")
take:

scala> takeRDD.foreach(x => print(x +" "))
1 2 3 4 5
scala> takeRDD.foreach(x => println(x +" "))
1
2
3
4
5

scala>  arr.flatMap(x=>(x._1+x._2)).foreach(x=>println(x +""))

scala> val arr=sc.parallelize(Array(("A",1),("B",2),("C",3)))
arr: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[16] at parallelize at <console>:27

scala> arr.take(1)
res28: Array[(String, Int)] = Array((A,1))

scala> arr.foreach(x=>println(x._1 +","+x._2))

scala> arr.lookup("A");
res30: Seq[Int] = WrappedArray(1)                                              

scala> arr.countByKey()
res31: scala.collection.Map[String,Long] = Map(B -> 1, A -> 1, C -> 1)         

scala> arr.collectAsMap
res32: scala.collection.Map[String,Int] = Map(A -> 1, C -> 3, B -> 2)          

scala> val arr = List(("A", 1), ("B", 2), ("A", 2), ("B", 3))
arr: List[(String, Int)] = List((A,1), (B,2), (A,2), (B,3))

scala> val rdd = sc.parallelize(arr,2)
rdd: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[21] at parallelize at <console>:29

scala> val countByKeyRDD = rdd.countByKey()
countByKeyRDD: scala.collection.Map[String,Long] = Map(B -> 2, A -> 2)         

scala> val collectAsMapRDD = rdd.collectAsMap()
collectAsMapRDD: scala.collection.Map[String,Int] = Map(A -> 2, B -> 3)

scala> countByKeyRDD.foreach(print)
(B,2)(A,2)
scala> collectAsMapRDD.foreach(print)
(A,2)(B,3)
scala>  val rdd = sc.parallelize(List(1,2,3,4),2)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[24] at parallelize at <console>:27

scala> val aggregateRDD = rdd.aggregate(2)(_+_,_ * _)
aggregateRDD: Int = 90                                                         

scala> println(aggregateRDD)
90

scala> def setOp(a:String,b:String):String={
     |      println("seqOp:"+a+"\t"+b);
     |      math.min(a.length, b.length).toString();
     |    }
setOp: (a: String, b: String)String

scala> def combOp(a:String,b:String):String = {
     |      println("combOp:"+a+"\t"+b);
     |      a+b;
     |    }
combOp: (a: String, b: String)String

scala> val z = sc.parallelize(List("12","23","345","4567"),2);
z: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[25] at parallelize at <console>:27

scala>  z.aggregate("")(seqOp,combOp);
<console>:32: error: not found: value seqOp
               z.aggregate("")(seqOp,combOp);
                               ^

scala> def seqOp(a:String,b:String):String={
     |      println("seqOp:"+a+"\t"+b);
     |      math.min(a.length, b.length).toString();
     |    }
seqOp: (a: String, b: String)String

scala>  z.aggregate("")(seqOp,combOp);
[Stage 30:>                                                         (0 + 2) / 2]combOp: 1
[Stage 30:=============================>                            (1 + 1) / 2]combOp:1        1
res37: String = 11                                                             

scala>  z.aggregate("")(seqOp,combOp);
combOp: 1
combOp:1        1
res38: String = 11

scala>  z.aggregate("")(seqOp,combOp);
combOp: 1
combOp:1        1
res39: String = 11

scala> def seqOp(a:String,b:String):String={
     |      println("seqOp jack:"+a+"\t"+b);
     |      math.min(a.length, b.length).toString();
     |    }
seqOp: (a: String, b: String)String

scala>  def combOp(a:String,b:String):String = {
     |      println("combOp jack:"+a+"\t"+b);
     |      a+b;
     |    }
combOp: (a: String, b: String)String

scala> val z = sc.parallelize(List("12","23","345","4567"),2);
z: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[26] at parallelize at <console>:27

scala>  z.aggregate("")(seqOp,combOp);
[Stage 33:>                                                         (0 + 2) / 2]combOp jack:    1
[Stage 33:=============================>                            (1 + 1) / 2]combOp jack:1   1
res40: String = 11                                                             

scala>  z.aggregate("")(seqOp,combOp);
combOp jack:    1
[Stage 34:=============================>                            (1 + 1) / 2]combOp jack:1   1
res41: String = 11                                                             

scala>  z.aggregate("")(seqOp,combOp);
[Stage 35:>                                                         (0 + 0) / 2]combOp jack:    1
combOp jack:1   1
res42: String = 11                                                             

scala> z.first()
res43: String = 12

scala> z.top(4)
res44: Array[String] = Array(4567, 345, 23, 12)

scala> z.count
res45: Long = 4

scala>  val z = List("12","23","345","4567");
z: List[String] = List(12, 23, 345, 4567)

scala> z.aggregate("")(seqOp,combOp);
seqOp jack:     12
seqOp jack:0    23
seqOp jack:1    345
seqOp jack:1    4567
res46: String = 1

scala> def seqOp(a:String,b:String):String={
     |      println("seqOp jack:"+a+"\t"+b);
     |      println("return:"+math.min(a.length, b.length).toString());
     |      return math.min(a.length, b.length).toString();
     |    }
seqOp: (a: String, b: String)String

scala> def combOp(a:String,b:String):String = {
     |      println("combOp jack:"+a+"\t"+b);
     |      a+b;
     |    }
combOp: (a: String, b: String)String

scala>    val z = List("12","23","345","4567");
z: List[String] = List(12, 23, 345, 4567)

scala>  z.aggregate("")(seqOp,combOp);
seqOp jack:     12
return:0
seqOp jack:0    23
return:1
seqOp jack:1    345
return:1
seqOp jack:1    4567
return:1
res47: String = 1

scala> countByKeyRDD.foreach(print)
(B,2)(A,2)
scala>  collectAsMapRDD.foreach(print)
(A,2)(B,3)
scala> collectAsMapRDD.saveAsTextFile("hdfs://192.168.1.56/tmp/jackteset")
<console>:34: error: value saveAsTextFile is not a member of scala.collection.Map[String,Int]
              collectAsMapRDD.saveAsTextFile("hdfs://192.168.1.56/tmp/jackteset")
                              ^

scala> var rdd1 = sc.makeRDD(1 to 10,2)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[28] at makeRDD at <console>:27

scala> rdd1.saveAsTextFile("hdfs://192.168.1.56/tmp/jackteset")
                                                                               
scala> rdd1.saveAsTextFile("hdfs://192.168.1.56/tmp/jackteset1",classOf[org.apache.hadoop.io.compress.SnappyCodec])</console></console></console></console></console></console></console></console></console></console></console></console></console></console></console></console></console></console></console></console></console></console></console></console></console></console>
分享到:
评论

相关推荐

    Spark生产优化总结

    Spark 可以使用 textFile 读取文件,并使用 sqlContext 读取 JSON 文件和 Avro 文件等。不同的文件格式和压缩方式对 Spark 生产优化有着不同的影响。 Spark Web-UI 查看 Spark Web-UI 是一个非常有用的工具,可以...

    windows下的snappy动态库

    Snappy是由Google开发的一个高效、轻量级的压缩和解压缩库,主要用于提高大数据处理的速度,常见于Hadoop、Spark等大数据处理框架中。它主要关注速度而非压缩比,适用于需要快速读写大量数据的场景。 描述中提到的...

    snappy压缩,解压算法

    - **大数据处理**:Snappy常被Hadoop、Spark等大数据框架用于中间数据的压缩,以减少I/O开销。 - **数据库系统**:例如,Google的Bigtable和Apache Cassandra都使用Snappy压缩存储数据。 - **日志收集**:在日志...

    snappy-1.1.9.tar.gz

    - 数据处理:Apache Spark、Apache Hadoop MapReduce等大数据处理框架利用Snappy减少数据传输时间和内存占用。 - 缓存系统:由于其快速的解压缩性能,Snappy也常被用在缓存系统中,如Memcached。 6. **Snappy的...

    snappy-1.1.8.tar.gz

    例如,在HDFS(Hadoop Distributed File System)中,Snappy可以作为文件的存储格式,使得数据在写入和读取时自动进行压缩和解压缩。 除此之外,Snappy还常用于日志收集系统,如Fluentd和Logstash,这些系统需要...

    hadoop3.x带snappy(可用于windows本地开发)

    1. **数据压缩**:Snappy可以用于HDFS(Hadoop Distributed File System)中的数据压缩,减小存储空间,提高网络传输效率。 2. **MapReduce优化**:在MapReduce任务中,使用Snappy压缩可以减少数据传输时间和内存...

    支持snappy压缩的hadoop2.7.2

    hadoop fs -put -compress snappy localfile hdfs://namenode:port/remotefile ``` Snappy在Hadoop中的使用并不局限于MapReduce,它也适用于其他组件,如HBase和Spark。在HBase中,可以设置表的存储层(StoreFile)...

    snappy-windows-1.1.7.rar

    Snappy是一款由Google开发的高效数据压缩库,主要用于提高大数据处理中的速度,尤其是在Hadoop、Spark等大数据处理框架中广泛应用。这个压缩算法的设计目标不是为了达到最佳的压缩比,而是追求快速的压缩和解压缩...

    Snappy vc2010版

    Snappy是一款由Google开发的高效数据压缩库,主要用于提高大数据处理中的I/O速度。它以其快速的压缩和解压缩性能而著称,尤其适合在内存有限的系统中使用,例如在分布式计算或云计算环境中。标题“Snappy vc2010版”...

    snappy-1.0.5源码

    它在许多开源项目中被广泛采用,特别是在Hadoop、Spark等大数据处理框架中,因为其速度非常快,虽然压缩比相对较低,但非常适合对速度有高要求的场景。 在`snappy-1.0.5`这个版本中,我们可以深入理解Snappy的设计...

    snappy-java-1.1.8.2-API文档-中文版.zip

    赠送jar包:snappy-java-1.1.8.2.jar; 赠送原API文档:snappy-java-1.1.8.2-javadoc.jar; 赠送源代码:snappy-java-1.1.8.2-sources.jar; 赠送Maven依赖信息文件:snappy-java-1.1.8.2.pom; 包含翻译后的API文档...

    snappy1.1.0安装包

    在分布式计算系统如Hadoop、Spark以及各种NoSQL数据库中,Snappy被广泛使用,因为它能够在保持较高压缩率的同时,提供非常快速的压缩和解压缩速度。 在描述中提到的"snappy1.1.0安装包"是Snappy库的一个特定版本,...

    snappy.tar.gz

    这对于大数据处理、日志记录、存储和网络传输等场景特别有用,例如在Hadoop、Spark等大数据处理框架中,Snappy被广泛用作数据压缩算法。 Snappy的设计目标是为高速度而优化,而非最小化文件大小。因此,与Gzip或...

    hadoop snappy编译安装包

    在Hadoop生态系统中,Snappy扮演着重要的角色,尤其是在HDFS(Hadoop Distributed File System)中。Hadoop默认支持多种压缩格式,包括Gzip、Bzip2和Snappy。由于Snappy的高速度,它通常被用于MapReduce任务的中间...

    谷歌官网的snappy

    Snappy is a compression/decompression library. It does not aim for maximum compression, or compatibility with any other compression library; instead, it aims for very high speeds and reasonable ...

    11Snappy-压缩工具-windows

    标题 "11Snappy-压缩工具-windows" 指的是在Windows操作系统中使用Snappy压缩工具,这是一款高效的数据压缩库,主要由Google开发并应用于大数据处理和存储系统,如Hadoop和Apache Cassandra。Snappy的特点是压缩速度...

    snappy-java-1.1.4-API文档-中文版.zip

    赠送jar包:snappy-java-1.1.4.jar; 赠送原API文档:snappy-java-1.1.4-javadoc.jar; 赠送源代码:snappy-java-1.1.4-sources.jar; 赠送Maven依赖信息文件:snappy-java-1.1.4.pom; 包含翻译后的API文档:snappy...

    snappy-java-1.0.4.1-API文档-中英对照版.zip

    赠送jar包:snappy-java-1.0.4.1.jar; 赠送原API文档:snappy-java-1.0.4.1-javadoc.jar; 赠送源代码:snappy-java-1.0.4.1-sources.jar; 赠送Maven依赖信息文件:snappy-java-1.0.4.1.pom; 包含翻译后的API文档...

Global site tag (gtag.js) - Google Analytics