一、环境说明
1、机器:一台物理机 和一台虚拟机
2、linux版本:[spark@S1PA11 ~]$ cat /etc/issue
Red Hat Enterprise Linux Server release 5.4 (Tikanga)
3、JDK: [spark@S1PA11 ~]$ java -version
java version "1.6.0_27"
Java(TM) SE Runtime Environment (build 1.6.0_27-b07)
Java HotSpot(TM) 64-Bit Server VM (build 20.2-b06, mixed mode)
4、集群节点:两个 S1PA11(Master),S1PA222(Slave)
二、准备工作
1、安装Java jdk前一篇文章撰写了:http://blog.csdn.net/stark_summer/article/details/42391531
2、ssh免密码验证 :http://blog.csdn.net/stark_summer/article/details/42393053
3、下载Hadoop版本:http://mirror.bit.edu.cn/apache/hadoop/common/
三、安装Hadoop
这是下载后的hadoop-2.6.0.tar.gz压缩包,
1、解压 tar -xzvf hadoop-2.6.0.tar.gz
2、move到指定目录下:[spark@S1PA11 software]$ mv hadoop-2.6.0 ~/opt/
3、进入hadoop目前 [spark@S1PA11 opt]$ cd hadoop-2.6.0/
[spark@S1PA11 hadoop-2.6.0]$ ls
bin dfs etc include input lib libexec LICENSE.txt logs NOTICE.txt README.txt sbin share tmp
配置之前,先在本地文件系统创建以下文件夹:~/hadoop/tmp、~/dfs/data、~/dfs/name。 主要涉及的配置文件有7个:都在/hadoop/etc/hadoop文件夹下,可以用gedit命令对其进行编辑。
~/hadoop/etc/hadoop/hadoop-env.sh
~/hadoop/etc/hadoop/yarn-env.sh
~/hadoop/etc/hadoop/slaves
~/hadoop/etc/hadoop/core-site.xml
~/hadoop/etc/hadoop/hdfs-site.xml
~/hadoop/etc/hadoop/mapred-site.xml
~/hadoop/etc/hadoop/yarn-site.xml
4、进去hadoop配置文件目录
[spark@S1PA11 hadoop-2.6.0]$ cd etc/hadoop/
[spark@S1PA11 hadoop]$ ls
capacity-scheduler.xml hadoop-env.sh httpfs-env.sh kms-env.sh mapred-env.sh ssl-client.xml.example
configuration.xsl hadoop-metrics2.properties httpfs-log4j.properties kms-log4j.properties mapred-queues.xml.template ssl-server.xml.example
container-executor.cfg hadoop-metrics.properties httpfs-signature.secret kms-site.xml mapred-site.xml yarn-env.cmd
core-site.xml hadoop-policy.xml httpfs-site.xml log4j.properties mapred-site.xml.template yarn-env.sh
hadoop-env.cmd hdfs-site.xml kms-acls.xml mapred-env.cmd slaves yarn-site.xml
4.1、配置 hadoop-env.sh文件-->修改JAVA_HOME
# The java implementation to use.
export JAVA_HOME=/home/spark/opt/java/jdk1.6.0_37
4.2、配置 yarn-env.sh 文件-->>修改JAVA_HOME
# some Java parameters
export JAVA_HOME=/home/spark/opt/java/jdk1.6.0_37
4.3、配置slaves文件-->>增加slave节点
S1PA222
4.4、配置 core-site.xml文件-->>增加hadoop核心配置(hdfs文件端口是9000、file:/home/spark/opt/hadoop-2.6.0/tmp、)
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://S1PA11:9000</value>
</property>
<property>
<name>io.file.buffer.size</name>
<value>131072</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>file:/home/spark/opt/hadoop-2.6.0/tmp</value>
<description>Abasefor other temporary directories.</description>
</property>
<property>
<name>hadoop.proxyuser.spark.hosts</name>
<value>*</value>
</property>
<property>
<name>hadoop.proxyuser.spark.groups</name>
<value>*</value>
</property>
</configuration>
4.5、配置 hdfs-site.xml 文件-->>增加hdfs配置信息(namenode、datanode端口和目录位置)
<configuration>
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>S1PA11:9001</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:/home/spark/opt/hadoop-2.6.0/dfs/name</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>file:/home/spark/opt/hadoop-2.6.0/dfs/data</value>
</property>
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
<property>
<name>dfs.webhdfs.enabled</name>
<value>true</value>
</property>
</configuration>
4.6、配置 mapred-site.xml 文件-->>增加mapreduce配置(使用yarn框架、jobhistory使用地址以及web地址)
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>mapreduce.jobhistory.address</name>
<value>S1PA11:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>S1PA11:19888</value>
</property>
</configuration>
4.7、配置 yarn-site.xml 文件-->>增加yarn功能
<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>S1PA11:8032</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>S1PA11:8030</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>S1PA11:8035</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address</name>
<value>S1PA11:8033</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address</name>
<value>S1PA11:8088</value>
</property>
</configuration>
5、将配置好的hadoop文件copy到另一台slave机器上
[spark@S1PA11 opt]$ scp -r hadoop-2.6.0/ spark@10.126.34.43:~/opt/
四、验证
1、格式化namenode:
[spark@S1PA11 opt]$ cd hadoop-2.6.0/
[spark@S1PA11 hadoop-2.6.0]$ ls
bin dfs etc include input lib libexec LICENSE.txt logs NOTICE.txt README.txt sbin share tmp
[spark@S1PA11 hadoop-2.6.0]$ ./bin/hdfs namenode -format
[spark@S1PA222 .ssh]$ cd ~/opt/hadoop-2.6.0
[spark@S1PA222 hadoop-2.6.0]$ ./bin/hdfs namenode -format
2、启动hdfs:
[spark@S1PA11 hadoop-2.6.0]$ ./sbin/start-dfs.sh
15/01/05 16:41:04 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Starting namenodes on [S1PA11]
S1PA11: starting namenode, logging to /home/spark/opt/hadoop-2.6.0/logs/hadoop-spark-namenode-S1PA11.out
S1PA222: starting datanode, logging to /home/spark/opt/hadoop-2.6.0/logs/hadoop-spark-datanode-S1PA222.out
Starting secondary namenodes [S1PA11]
S1PA11: starting secondarynamenode, logging to /home/spark/opt/hadoop-2.6.0/logs/hadoop-spark-secondarynamenode-S1PA11.out
15/01/05 16:41:21 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
[spark@S1PA11 hadoop-2.6.0]$ jps
22230 Master
30889 Jps
22478 Worker
30498 NameNode
30733 SecondaryNameNode
19781 ResourceManager
3、停止hdfs:
[spark@S1PA11 hadoop-2.6.0]$./sbin/stop-dfs.sh
15/01/05 16:40:28 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Stopping namenodes on [S1PA11]
S1PA11: stopping namenode
S1PA222: stopping datanode
Stopping secondary namenodes [S1PA11]
S1PA11: stopping secondarynamenode
15/01/05 16:40:48 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
[spark@S1PA11 hadoop-2.6.0]$ jps
30336 Jps
22230 Master
22478 Worker
19781 ResourceManager
4、启动yarn:
[spark@S1PA11 hadoop-2.6.0]$./sbin/start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /home/spark/opt/hadoop-2.6.0/logs/yarn-spark-resourcemanager-S1PA11.out
S1PA222: starting nodemanager, logging to /home/spark/opt/hadoop-2.6.0/logs/yarn-spark-nodemanager-S1PA222.out
[spark@S1PA11 hadoop-2.6.0]$ jps
31233 ResourceManager
22230 Master
22478 Worker
30498 NameNode
30733 SecondaryNameNode
31503 Jps
5、停止yarn:
[spark@S1PA11 hadoop-2.6.0]$ ./sbin/stop-yarn.sh
stopping yarn daemons
stopping resourcemanager
S1PA222: stopping nodemanager
no proxyserver to stop
[spark@S1PA11 hadoop-2.6.0]$ jps
31167 Jps
22230 Master
22478 Worker
30498 NameNode
30733 SecondaryNameNode
6、查看集群状态:
[spark@S1PA11 hadoop-2.6.0]$ ./bin/hdfs dfsadmin -report
15/01/05 16:44:50 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Configured Capacity: 52101857280 (48.52 GB)
Present Capacity: 45749510144 (42.61 GB)
DFS Remaining: 45748686848 (42.61 GB)
DFS Used: 823296 (804 KB)
DFS Used%: 0.00%
Under replicated blocks: 10
Blocks with corrupt replicas: 0
Missing blocks: 0
-------------------------------------------------
Live datanodes (1):
Name: 10.126.45.56:50010 (S1PA222)
Hostname: S1PA209
Decommission Status : Normal
Configured Capacity: 52101857280 (48.52 GB)
DFS Used: 823296 (804 KB)
Non DFS Used: 6352347136 (5.92 GB)
DFS Remaining: 45748686848 (42.61 GB)
DFS Used%: 0.00%
DFS Remaining%: 87.81%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Mon Jan 05 16:44:50 CST 2015
7、查看hdfs:http://10.58.44.47:50070/
8、查看RM:http://10.58.44.47:8088/
9、运行wordcount程序
9.1、创建 input目录:[spark@S1PA11 hadoop-2.6.0]$ mkdir input
9.2、在input创建f1、f2并写内容
[spark@S1PA11 hadoop-2.6.0]$ cat input/f1
Hello world bye jj
[spark@S1PA11 hadoop-2.6.0]$ cat input/f2
Hello Hadoop bye Hadoop
9.3、在hdfs创建/tmp/input目录
[spark@S1PA11 hadoop-2.6.0]$ ./bin/hadoop fs -mkdir /tmp
15/01/05 16:53:57 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
[spark@S1PA11 hadoop-2.6.0]$ ./bin/hadoop fs -mkdir /tmp/input
15/01/05 16:54:16 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
9.4、将f1、f2文件copy到hdfs /tmp/input目录
[spark@S1PA11 hadoop-2.6.0]$ ./bin/hadoop fs -put input/ /tmp
15/01/05 16:56:01 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
9.5、查看hdfs上是否有f1、f2文件
[spark@S1PA11 hadoop-2.6.0]$ ./bin/hadoop fs -ls /tmp/input/
15/01/05 16:57:42 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 2 items
-rw-r--r-- 3 spark supergroup 20 2015-01-04 19:09 /tmp/input/f1
-rw-r--r-- 3 spark supergroup 25 2015-01-04 19:09 /tmp/input/f2
9.6、执行wordcount程序
[spark@S1PA11 hadoop-2.6.0]$ ./bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar wordcount /tmp/input /output
15/01/05 17:00:09 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
15/01/05 17:00:09 INFO client.RMProxy: Connecting to ResourceManager at S1PA11/10.58.44.47:8032
15/01/05 17:00:11 INFO input.FileInputFormat: Total input paths to process : 2
15/01/05 17:00:11 INFO mapreduce.JobSubmitter: number of splits:2
15/01/05 17:00:11 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1420447392452_0001
15/01/05 17:00:12 INFO impl.YarnClientImpl: Submitted application application_1420447392452_0001
15/01/05 17:00:12 INFO mapreduce.Job: The url to track the job: http://S1PA11:8088/proxy/application_1420447392452_0001/
15/01/05 17:00:12 INFO mapreduce.Job: Running job: job_1420447392452_0001
9.7、查看执行结果
[spark@S1PA11 hadoop-2.6.0]$ ./bin/hadoop fs -cat /output/part-r-0000
15/01/05 17:06:10 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
http://blog.csdn.net/stark_summer/article/details/42424279
相关推荐
本文将详细介绍如何在Windows环境下搭建Hadoop2.6.0版本。首先,我们需要从指定的下载地址获取CDH(Cloudera Distribution Including Apache Hadoop)提供的Hadoop2.6.0-cdh5.13.0的压缩包,地址为:...
1.linux系统:Ubuntu14.04 2.hadoop版本:hadoop-2.2.0 3.JDK版本:Jdk1.8.0_74
CentOS 6.8 + Hadoop2.6.0集群环境搭建指南。
在标题中提到的“hadoop2.6.0版本hadoop.dll和winutils.exe”是针对Windows环境下运行Hadoop的一些关键组件。 1. **Hadoop 2.6.0**: 这是Hadoop的一个主要版本,发布于2014年,带来了许多增强和改进。在Hadoop 2.x...
集群搭建的最后一步是启动Hadoop的各个服务,这包括格式化HDFS、启动HDFS的NameNode、DataNode、SecondaryNameNode以及YARN的ResourceManager和NodeManager。通过`jps`命令可以查看这些服务是否已经启动成功。 ### ...
这个"hadop 2.6.0 安装包"是为了帮助用户搭建和配置Hadoop环境,特别适用于大数据处理和分析。 1. **Hadoop的核心组件** - **HDFS(Hadoop Distributed File System)**:分布式文件系统,负责数据的存储。HDFS...
Hadoop2.6.0是这个框架的一个重要版本,它包含了多项优化和改进,以提高系统的稳定性和性能。在这个压缩包中,我们关注的是与Windows环境相关的两个关键组件:Winutils和hadoop.dll。 首先,让我们详细了解一下...
用户可以通过解压此文件,编译安装来搭建自己的Hadoop环境,进行分布式计算和数据存储。这个版本还包含了其他相关工具,如Hadoop命令行工具、Hadoop守护进程等,用于管理和操作Hadoop集群。 而hadoop-2.6.0-cdh...
这个压缩包“hadoop-2.6.0.tar.gz”包含了Hadoop 2.6.0版本的所有组件,是搭建Hadoop集群的关键组成部分。在这个版本中,Hadoop已经相当成熟,提供了许多改进和新特性,使得它在大数据处理领域更加高效和稳定。 在...
3. 解压Hadoop压缩包:使用`tar -zxvf hadoop2.6.0.tgz`命令解压。 4. 配置环境变量:在`~/.bashrc`或`~/.bash_profile`文件中设置HADOOP_HOME,并添加到PATH。 5. 配置Hadoop配置文件:修改`etc/hadoop/core-site....
4. **HDFS模拟器**: Hadoop2.6.0版本包含了HDFS的本地模拟器,使得开发者可以在单机的Windows环境下测试HDFS操作,而无需完整的分布式集群。这对于开发和调试Hadoop应用程序非常有用。 5. **安全认证**: winutils....
### Hadoop集群搭建知识点 #### 一、概述 Hadoop是一种能够处理大量数据的大规模分布式存储与...通过上述步骤,可以在Ubuntu环境下成功搭建起一个基本的Hadoop 2.6.0集群,为进一步的数据处理和分析打下坚实的基础。
在Hadoop生态系统中,`hadoop.dll`和`winutils.exe`是两个关键组件,尤其对于Windows用户来说。本文将详细介绍这两个文件以及它们在Hadoop ...正确配置和使用这些文件,对于在Windows上搭建和管理Hadoop集群至关重要。
hadoop2.6.0完全分布式搭建
在Windows环境下搭建Hadoop2.6开发环境是一个相对复杂的过程,但通过详细的步骤和注意事项,可以有效地完成。这里我们将深入探讨这个过程,并介绍如何解决可能出现的问题。 首先,我们需要下载Hadoop2.6.0的安装包...
Eclipse Hadoop 2.6.0 插件是针对Hadoop开发的一款工具,它使得在Eclipse集成开发环境中管理、配置和调试Hadoop项目变得简单高效。这个插件不仅提高了开发人员的工作效率,还降低了操作Hadoop集群的复杂性。 Hadoop...
这个工具通常包含在`hadoop2.6.0`版本的核心组件中,并被放置在`HADOOP_HOME\bin`目录下。本文将深入探讨`winutils.exe`的作用、功能以及如何解决在Windows上运行Hadoop时遇到的相关问题。 一、`winutils.exe`简介 ...
本指南将详细介绍如何在基于 Hadoop 2.6.0 的环境中搭建 Spark 1.3.1 平台,以实现高效的数据处理。 首先,我们需要进行虚拟化环境的准备。这里推荐使用 VMware Workstation 11 作为虚拟化软件,它为开发和测试提供...
- 创建 `/opt/yarn` 目录,并进入该目录使用 `tar xvf hadoop2.6.0.tar.gz` 解压文件。 3. **用户和组创建**: - 根据实际需要创建用户组(例如 `hadoop`),以及用户(如 `yarn`, `hdfs`, `mapred`)。 4. **...
Hadoop是Apache软件基金会开发的一个开源分布式计算...总的来说,Hadoop-2.6.0在Windows上的部署虽然相比Linux平台更为复杂,但通过正确配置和理解这些关键组件,可以成功搭建和运行Hadoop集群,利用其大数据处理能力。