题目大意:也是求最短路的题,有多个起始点,每个点按时间从小到大,输出路径等。
算法思路:dijikstra算法的应用。但是注意一下路径的输出,这里可以用记录每个点前驱的方法,来做,最后只要通过while循环(递归也可以)从结束点不断的寻找前驱即可。
#include <iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<queue> using namespace std; #define INF 0x3f3f3f3f int n; int a[25][25]; int ans[25][25],dist[25],pre[25]; bool visited[25]; int f,ff,sumf; typedef struct Node { int t; int src; int fw[25]; int paths; }; Node nodes[25]; bool cmp(Node n1,Node n2) { return n1.t<n2.t; } void dijkstra(int src,int flag) { memset(dist,0x3f,sizeof(dist)); memset(visited,false,sizeof(visited)); memset(pre,0,sizeof(pre)); for(int i=1;i<=n;i++) { dist[i]=a[src][i]; } for(int i=1;i<=n;i++) { if(i!=src) pre[i]=src; } visited[src]=true; for(int i=1;i<=n;i++) { int MIN=INF,node=-1; for(int j=1;j<=n;j++) { if(MIN>dist[j]&&!visited[j]) { MIN=dist[j]; node=j; } } if(node==-1) return ; visited[node]=true; if(node==f) { nodes[flag].t=dist[f]; return; } for(int j=1;j<=n;j++) { if(!visited[j]&&dist[j]>dist[node]+a[node][j]) { pre[j]=node; dist[j]=dist[node]+a[node][j]; } } } nodes[flag].t=dist[f]; } void getPath(int k) { int ss=1; int fl=f; do { nodes[k].fw[ss++]=fl; fl=pre[fl]; }while(fl); nodes[k].paths=ss-1; } int main() { scanf("%d",&n); for(int i=1;i<=n;i++) { for(int j=1;j<=n;j++) { scanf("%d",&a[i][j]); if(a[i][j]==-1) a[i][j]=INF; } } sumf=1; scanf("%d",&f); getchar(); while(true) { scanf("%d",&ff); char c=getchar(); nodes[sumf++].src=ff; if(c=='\n') break; } for(int i=1;i<=sumf;i++) { int k=0; dijkstra(nodes[i].src,i);//第个起点 getPath(i); } sort(nodes,nodes+sumf,cmp); printf("Org\tDest\tTime\tPath\n"); for(int i=1;i<=sumf-1;i++) { printf("%d\t%d\t%d\t",nodes[i].src,f,nodes[i].t); for(int j=nodes[i].paths;j>=1;j--) { printf("%d\t",nodes[i].fw[j]); } printf("\n"); } return 0; }
相关推荐
【标题】"POJ.rar_poj java_poj1048" 涉及的知识点主要围绕编程竞赛中的“约瑟夫环”问题,这里是一个加强版,使用Java语言进行解决。 【描述】"POJ1048,加强版的约瑟夫问题 难度中等" 提示我们,这个问题是编程...
* 图的深度优先遍历和广度优先遍历:图的深度优先遍历和广度优先遍历是指遍历图的两种方式,如 poj1860、poj3259、poj1062、poj2253、poj1125、poj2240。 * 最短路径算法:最短路径算法是指计算图中两点之间的最短...
【标题】"POJ1159-Palindrome" 是北京大学在线编程平台POJ上的一道编程题目。这道题目主要考察的是字符串处理和回文判断的知识点。 【描述】"北大POJ1159-Palindrome 解题报告+AC代码" 暗示了解决这道问题的方法和...
标题“POJ3253-POJ3253-Fence Repair【STL优先队列】”指的是一个在线编程竞赛题目,源自北京大学的在线判题系统POJ(Problem Online Judge)。该题目要求参赛者使用C++编程语言解决特定的问题,并且在解决方案中...
1. **状态转移方程**:设计复杂的动态规划状态转移方程(poj1191, poj1054, poj3280, poj2029, poj2948, poj1925, poj3034)。 2. **记忆化搜索**:结合动态规划和递归搜索(POJ3254, poj2411, poj1185)。 3. **...
这些题目是针对ACM竞赛(ACM International Collegiate Programming Contest,简称ICPC)中的编程训练,POJ(Problem Set for Online Judges)是一个在线的编程竞赛平台,提供了许多算法和逻辑思维的练习题目。...
【标题】"POJ2002-Squares"是一个经典的计算机编程题目,源自北京大学的在线判题系统(POJ,即PKU Online Judge)。这个题目主要涉及到算法设计和实现,尤其是数学和动态规划方面的知识。 【描述】"解题报告+AC代码...
根据给定的文件信息,我们可以总结出一份详细的IT知识训练计划,主要针对编程竞赛和算法学习,特别是聚焦于POJ(Problem Online Judge)平台上的题目训练。这份计划分为两个阶段,初级阶段和中级阶段,共计涉及了165...
标题中的"jihe.rar_2289_POJ 3714_poj3714_poj3714 Ra_visual c" 提到了一个压缩文件,可能包含有关编程竞赛或算法解决的资源,特别是与POJ(Problem On Judge)平台上的问题3714相关的。"Ra_visual c"可能指的是...
- **例题**:poj1860, poj3259, poj1062, poj2253, poj1125, poj2240 - **解释**:最短路径算法包括Dijkstra算法、Bellman-Ford算法、Floyd算法以及堆优化的Dijkstra算法等。 ##### (3) 最小生成树算法 - **例题**...
* 较为复杂的动态规划:例如 poj1191、poj1054、poj3280、poj2029、poj2948、poj1925、poj3034。 数学 1. 组合数学: * 加法原理和乘法原理。 * 排列组合。 * 递推关系:例如 poj3252、poj1850、poj1019、poj...
【标题】"POJ1837-Balance"是一个在线编程竞赛题目,源自著名的编程练习平台POJ(Programming Online Judge)。这个题目旨在测试参赛者的算法设计和实现能力,特别是处理平衡问题的技巧。 【描述】"解题报告+AC代码...
标题和描述中的“poj各种分类”主要指向的是在POJ(Peking University Online Judge)平台上,根据解题策略和算法类型对题目进行的分类。POJ作为一个知名的在线编程平台,提供了大量的算法练习题,适合从初学者到...
poj 3414解题报告poj 3414解题报告poj 3414解题报告poj 3414解题报告
【标题】"POJ1201-Intervals" 是北京大学在线编程平台POJ上的一道题目,这道题目主要涉及计算机科学中的算法设计与分析,尤其是数据结构和时间复杂度优化方面的知识。 【描述】"北大POJ1201-Intervals 解题报告+AC...
【标题】"POJ1010-STAMPS"是一个编程题目,来源于北京大学的在线判题系统POJ(Problem Set of Peking University),这是一处训练程序员算法技能和编程能力的平台。该题目旨在考察参赛者对动态规划或贪心算法的理解...
poj 1012解题报告poj 1012解题报告poj 1012解题报告poj 1012解题报告
poj 2329解题报告poj 2329解题报告poj 2329解题报告poj 2329解题报告
poj 1659解题报告poj 1659解题报告poj 1659解题报告poj 1659解题报告
POJ1503解答 POJ1503解答,正确答案(已通过POJ)