`
frank-liu
  • 浏览: 1686184 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

leetcode: Binary Tree Postorder Traversal

 
阅读更多

问题描述:

Given a binary tree, return the postorder traversal of its nodes' values.

For example:
Given binary tree {1,#,2,3},

   1
    \
     2
    /
   3

 

return [3,2,1].

Note: Recursive solution is trivial, could you do it iteratively?

原问题链接:https://leetcode.com/problems/binary-tree-postorder-traversal/

 

问题分析

  和之前问题的讨论类似,关于二叉树的后序遍历,也是有固定的套路可循的。只是二叉树后续遍历的非递归解法确实比较复杂。需要仔细分析。

 

递归解法 

  这种解法还是固定的套路,首先递归的去看节点的左子节点,再去看节点的右子节点,再访问当前节点。在访问节点的时候将节点的值加入到列表中。

  详细的代码实现如下:

 

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> result = new LinkedList<>();
        if(root == null) return result;
        postorderTraversal(root, result);
        return result;
    }
    
    private void postorderTraversal(TreeNode node, List<Integer> list) {
        if(node == null) return;
        if(node.left != null) postorderTraversal(node.left, list);
        if(node.right != null) postorderTraversal(node.right, list);
        list.add(node.val);
    }
}

 

非递归解法 

  这种解法思路如下:对于任意一个节点,我们需要访问了它的左右子节点之后才能访问它。所以,我们可以这样来考虑,对于一个节点,先将它入栈,如果它的左右子节点为空,则可以直接访问它。另外,如果它的左右子节点都被访问过了,也可以访问它。如果不是以上的这两种情况,则先后将它的右子节点和左子节点入栈。这样保证了每次先访问左子节点,再访问右子节点。 

 

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> result = new LinkedList<>();
        LinkedList<TreeNode> stack = new LinkedList<>();
        TreeNode cur, pre = null;
        if(root != null) {
            stack.push(root);
            while(!stack.isEmpty()) {
                cur = stack.peek();
                if((cur.left == null && cur.right == null) || 
                    (pre != null && (pre == cur.left || pre == cur.right))) {
                    result.add(cur.val);
                    stack.pop();
                    pre = cur;
                } else {
                    if(cur.right != null) stack.push(cur.right);
                    if(cur.left != null) stack.push(cur.left);
                }
            }
        }
        return result;
    }
} 
分享到:
评论

相关推荐

Global site tag (gtag.js) - Google Analytics