概要
前面分别通过C和C++实现了二叉堆,本章给出二叉堆的Java版本。还是那句话,它们的原理一样,择其一了解即可。
目录
1. 二叉堆的介绍
2. 二叉堆的图文解析
3. 二叉堆的Java实现(完整源码)
4. 二叉堆的Java测试程序
更多内容:数据结构与算法系列 目录
(01) 二叉堆(一)之 图文解析 和 C语言的实现
(02) 二叉堆(二)之 C++的实现
(03) 二叉堆(三)之 Java的实
二叉堆的介绍
二叉堆是完全二元树或者是近似完全二元树,按照数据的排列方式可以分为两种:最大堆和最小堆。
最大堆:父结点的键值总是大于或等于任何一个子节点的键值;最小堆:父结点的键值总是小于或等于任何一个子节点的键值。
二叉堆一般都通过"数组"来实现,下面是数组实现的最大堆和最小堆的示意图:
二叉堆的图文解析
图文解析是以"最大堆"来进行介绍的。
最大堆的核心内容是"添加"和"删除",理解这两个算法,二叉堆也就基本掌握了。下面对它们进行介绍,其它内容请参考后面的完整源码。
1. 添加
假设在最大堆[90,80,70,60,40,30,20,10,50]种添加85,需要执行的步骤如下:
如上图所示,当向最大堆中添加数据时:先将数据加入到最大堆的最后,然后尽可能把这个元素往上挪,直到挪不动为止!
将85添加到[90,80,70,60,40,30,20,10,50]中后,最大堆变成了[90,85,70,60,80,30,20,10,50,40]。
最大堆的插入代码(Java语言)
/* * 最大堆的向上调整算法(从start开始向上直到0,调整堆) * * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。 * * 参数说明: * start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引) */ protected void filterup(int start) { int c = start; // 当前节点(current)的位置 int p = (c-1)/2; // 父(parent)结点的位置 T tmp = mHeap.get(c); // 当前节点(current)的大小 while(c > 0) { int cmp = mHeap.get(p).compareTo(tmp); if(cmp >= 0) break; else { mHeap.set(c, mHeap.get(p)); c = p; p = (p-1)/2; } } mHeap.set(c, tmp); } /* * 将data插入到二叉堆中 */ public void insert(T data) { int size = mHeap.size(); mHeap.add(data); // 将"数组"插在表尾 filterup(size); // 向上调整堆 }
insert(data)的作用:将数据data添加到最大堆中。mHeap是动态数组ArrayList对象。
当堆已满的时候,添加失败;否则data添加到最大堆的末尾。然后通过上调算法重新调整数组,使之重新成为最大堆。
2. 删除
假设从最大堆[90,85,70,60,80,30,20,10,50,40]中删除90,需要执行的步骤如下:
如上图所示,当从最大堆中删除数据时:先删除该数据,然后用最大堆中最后一个的元素插入这个空位;接着,把这个“空位”尽量往上挪,直到剩余的数据变成一个最大堆。
从[90,85,70,60,80,30,20,10,50,40]删除90之后,最大堆变成了[85,80,70,60,40,30,20,10,50]。
注意:考虑从最大堆[90,85,70,60,80,30,20,10,50,40]中删除60,执行的步骤不能单纯的用它的字节点来替换;而必须考虑到"替换后的树仍然要是最大堆"!
二叉堆的删除代码(Java语言)
/* * 最大堆的向下调整算法 * * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。 * * 参数说明: * start -- 被下调节点的起始位置(一般为0,表示从第1个开始) * end -- 截至范围(一般为数组中最后一个元素的索引) */ protected void filterdown(int start, int end) { int c = start; // 当前(current)节点的位置 int l = 2*c + 1; // 左(left)孩子的位置 T tmp = mHeap.get(c); // 当前(current)节点的大小 while(l <= end) { int cmp = mHeap.get(l).compareTo(mHeap.get(l+1)); // "l"是左孩子,"l+1"是右孩子 if(l < end && cmp<0) l++; // 左右两孩子中选择较大者,即mHeap[l+1] cmp = tmp.compareTo(mHeap.get(l)); if(cmp >= 0) break; //调整结束 else { mHeap.set(c, mHeap.get(l)); c = l; l = 2*l + 1; } } mHeap.set(c, tmp); } /* * 删除最大堆中的data * * 返回值: * 0,成功 * -1,失败 */ public int remove(T data) { // 如果"堆"已空,则返回-1 if(mHeap.isEmpty() == true) return -1; // 获取data在数组中的索引 int index = mHeap.indexOf(data); if (index==-1) return -1; int size = mHeap.size(); mHeap.set(index, mHeap.get(size-1));// 用最后元素填补 mHeap.remove(size - 1); // 删除最后的元素 if (mHeap.size() > 1) filterdown(index, mHeap.size()-1); // 从index号位置开始自上向下调整为最小堆 return 0; }
二叉堆的Java实现(完整源码)
二叉堆的实现同时包含了"最大堆"和"最小堆"。
二叉堆(最大堆)的实现文件(MaxHeap.java)
/** * 二叉堆(最大堆) * * @author skywang * @date 2014/03/07 */ import java.util.ArrayList; import java.util.List; public class MaxHeap<T extends Comparable<T>> { private List<T> mHeap; // 队列(实际上是动态数组ArrayList的实例) public MaxHeap() { this.mHeap = new ArrayList<T>(); } /* * 最大堆的向下调整算法 * * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。 * * 参数说明: * start -- 被下调节点的起始位置(一般为0,表示从第1个开始) * end -- 截至范围(一般为数组中最后一个元素的索引) */ protected void filterdown(int start, int end) { int c = start; // 当前(current)节点的位置 int l = 2*c + 1; // 左(left)孩子的位置 T tmp = mHeap.get(c); // 当前(current)节点的大小 while(l <= end) { int cmp = mHeap.get(l).compareTo(mHeap.get(l+1)); // "l"是左孩子,"l+1"是右孩子 if(l < end && cmp<0) l++; // 左右两孩子中选择较大者,即mHeap[l+1] cmp = tmp.compareTo(mHeap.get(l)); if(cmp >= 0) break; //调整结束 else { mHeap.set(c, mHeap.get(l)); c = l; l = 2*l + 1; } } mHeap.set(c, tmp); } /* * 删除最大堆中的data * * 返回值: * 0,成功 * -1,失败 */ public int remove(T data) { // 如果"堆"已空,则返回-1 if(mHeap.isEmpty() == true) return -1; // 获取data在数组中的索引 int index = mHeap.indexOf(data); if (index==-1) return -1; int size = mHeap.size(); mHeap.set(index, mHeap.get(size-1));// 用最后元素填补 mHeap.remove(size - 1); // 删除最后的元素 if (mHeap.size() > 1) filterdown(index, mHeap.size()-1); // 从index号位置开始自上向下调整为最小堆 return 0; } /* * 最大堆的向上调整算法(从start开始向上直到0,调整堆) * * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。 * * 参数说明: * start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引) */ protected void filterup(int start) { int c = start; // 当前节点(current)的位置 int p = (c-1)/2; // 父(parent)结点的位置 T tmp = mHeap.get(c); // 当前节点(current)的大小 while(c > 0) { int cmp = mHeap.get(p).compareTo(tmp); if(cmp >= 0) break; else { mHeap.set(c, mHeap.get(p)); c = p; p = (p-1)/2; } } mHeap.set(c, tmp); } /* * 将data插入到二叉堆中 */ public void insert(T data) { int size = mHeap.size(); mHeap.add(data); // 将"数组"插在表尾 filterup(size); // 向上调整堆 } @Override public String toString() { StringBuilder sb = new StringBuilder(); for (int i=0; i<mHeap.size(); i++) sb.append(mHeap.get(i) +" "); return sb.toString(); } public static void main(String[] args) { int i; int a[] = {10, 40, 30, 60, 90, 70, 20, 50, 80}; MaxHeap<Integer> tree=new MaxHeap<Integer>(); System.out.printf("== 依次添加: "); for(i=0; i<a.length; i++) { System.out.printf("%d ", a[i]); tree.insert(a[i]); } System.out.printf("\n== 最 大 堆: %s", tree); i=85; tree.insert(i); System.out.printf("\n== 添加元素: %d", i); System.out.printf("\n== 最 大 堆: %s", tree); i=90; tree.remove(i); System.out.printf("\n== 删除元素: %d", i); System.out.printf("\n== 最 大 堆: %s", tree); System.out.printf("\n"); } }
二叉堆(最小堆)的实现文件(MinHeap.java)
/** * 二叉堆(最小堆) * * @author skywang * @date 2014/03/07 */ import java.util.ArrayList; import java.util.List; public class MinHeap<T extends Comparable<T>> { private List<T> mHeap; // 存放堆的数组 public MinHeap() { this.mHeap = new ArrayList<T>(); } /* * 最小堆的向下调整算法 * * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。 * * 参数说明: * start -- 被下调节点的起始位置(一般为0,表示从第1个开始) * end -- 截至范围(一般为数组中最后一个元素的索引) */ protected void filterdown(int start, int end) { int c = start; // 当前(current)节点的位置 int l = 2*c + 1; // 左(left)孩子的位置 T tmp = mHeap.get(c); // 当前(current)节点的大小 while(l <= end) { int cmp = mHeap.get(l).compareTo(mHeap.get(l+1)); // "l"是左孩子,"l+1"是右孩子 if(l < end && cmp>0) l++; // 左右两孩子中选择较小者,即mHeap[l+1] cmp = tmp.compareTo(mHeap.get(l)); if(cmp <= 0) break; //调整结束 else { mHeap.set(c, mHeap.get(l)); c = l; l = 2*l + 1; } } mHeap.set(c, tmp); } /* * 最小堆的删除 * * 返回值: * 成功,返回被删除的值 * 失败,返回null */ public int remove(T data) { // 如果"堆"已空,则返回-1 if(mHeap.isEmpty() == true) return -1; // 获取data在数组中的索引 int index = mHeap.indexOf(data); if (index==-1) return -1; int size = mHeap.size(); mHeap.set(index, mHeap.get(size-1));// 用最后元素填补 mHeap.remove(size - 1); // 删除最后的元素 if (mHeap.size() > 1) filterdown(index, mHeap.size()-1); // 从index号位置开始自上向下调整为最小堆 return 0; } /* * 最小堆的向上调整算法(从start开始向上直到0,调整堆) * * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。 * * 参数说明: * start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引) */ protected void filterup(int start) { int c = start; // 当前节点(current)的位置 int p = (c-1)/2; // 父(parent)结点的位置 T tmp = mHeap.get(c); // 当前节点(current)的大小 while(c > 0) { int cmp = mHeap.get(p).compareTo(tmp); if(cmp <= 0) break; else { mHeap.set(c, mHeap.get(p)); c = p; p = (p-1)/2; } } mHeap.set(c, tmp); } /* * 将data插入到二叉堆中 */ public void insert(T data) { int size = mHeap.size(); mHeap.add(data); // 将"数组"插在表尾 filterup(size); // 向上调整堆 } public String toString() { StringBuilder sb = new StringBuilder(); for (int i=0; i<mHeap.size(); i++) sb.append(mHeap.get(i) +" "); return sb.toString(); } public static void main(String[] args) { int i; int a[] = {80, 40, 30, 60, 90, 70, 10, 50, 20}; MinHeap<Integer> tree=new MinHeap<Integer>(); System.out.printf("== 依次添加: "); for(i=0; i<a.length; i++) { System.out.printf("%d ", a[i]); tree.insert(a[i]); } System.out.printf("\n== 最 小 堆: %s", tree); i=15; tree.insert(i); System.out.printf("\n== 添加元素: %d", i); System.out.printf("\n== 最 小 堆: %s", tree); i=10; tree.remove(i); System.out.printf("\n== 删除元素: %d", i); System.out.printf("\n== 最 小 堆: %s", tree); System.out.printf("\n"); } }
二叉堆的Java测试程序
测试程序已经包含在相应的实现文件中了,这里只说明运行结果。
最大堆(MaxHeap.java)的运行结果:
== 依次添加: 10 40 30 60 90 70 20 50 80 == 最 大 堆: 90 80 70 60 40 30 20 10 50 == 添加元素: 85 == 最 大 堆: 90 85 70 60 80 30 20 10 50 40 == 删除元素: 90 == 最 大 堆: 85 80 70 60 40 30 20 10 50
最小堆(MinHeap.java)的运行结果:
== 最 小 堆: 10 20 30 50 90 70 40 80 60 == 添加元素: 15 == 最 小 堆: 10 15 30 50 20 70 40 80 60 90 == 删除元素: 10 == 最 小 堆: 15 20 30 50 90 70 40 80 60
PS. 二叉堆是"堆排序"的理论基石。以后讲解算法时会讲解到"堆排序",理解了"二叉堆"之后,"堆排序"就很简单了。
相关推荐
个人实现的最小权重的二叉堆实现,效率很高,适合任意场合下的临时列表排序。 可在外部写脚本对该文件进行测试 需要继承Tuple类实现排序对象类型,并实现Tuple的抽象方法weight()来反映排序对象权重
在Java中,二叉堆通常通过`PriorityQueue`类来实现。`PriorityQueue`是一个基于二叉堆的无界优先队列,它不支持并集操作,但提供了丰富的功能来处理元素的增删查改。下面我们将深入探讨二叉堆的核心概念和Java中的...
在给定的"博客代码"中,作者可能详细介绍了如何用C++或Java等编程语言实现二叉堆。这些代码可能包括以下关键函数: 1. **插入元素**:向二叉堆中添加一个新元素,需要保证插入后仍满足堆的性质。这通常通过将新元素...
Java 编程实现优先队列的二叉堆代码分享 Java 编程实现优先队列的二叉堆代码分享是指使用 Java 语言实现优先队列的二叉堆算法,以下是该实现的详细知识点: 1. 二叉堆(Binary Heap)的概念:二叉堆是一种特殊的...
以下是一个简单的Java实现: ```java public class Node { int key; Node left, right; public Node(int item) { key = item; left = right = null; } } public class BinarySearchTree { Node root; //...
在Java中,我们可以使用数组来表示一个二叉堆。堆排序分为两个主要步骤:建堆和调整堆。 首先,我们理解一下什么是堆。堆是一个近似完全二叉树的结构,并同时满足堆的性质:即子节点的键值或索引总是小于(或者大于...
这个Java实现提供了对二叉堆基本操作的直观理解,对于学习和实践二叉堆的使用非常有帮助。通过这个代码,开发者可以了解如何在实际项目中构建和管理二叉堆,以及如何通过层次遍历来呈现堆的结构。
标题中的“DSAA_堆排序java实现_源码”表明这是一个关于数据结构与算法分析(Data Structures and Algorithms Analysis,简称DSAA)的资料包,主要关注堆排序算法的Java实现。堆排序是一种高效的排序算法,它利用了...
#### 三、堆排序的Java实现 下面是一段实现了堆排序的Java代码示例: ```java public class HeapSort { // 主方法:测试堆排序 public static void main(String[] args) { int[] array = {12, 11, 13, 5, 6, 7}...
java实现二叉堆,包括二叉堆的上浮、下沉、二叉堆的构建。
堆排序是一种高效的比较类排序算法,它利用了二叉堆的数据结构来实现排序。堆排序可以分为两个主要步骤:建堆(将无序的元素构建成一个堆)和排序(利用堆的性质进行排序)。 代码首先定义了一个HeapSort类,其中...
堆排序是一种高效的比较类排序算法,它利用了二叉堆的数据结构来实现排序。堆排序可以分为两个主要步骤:建堆(将无序的元素构建成一个堆)和排序(利用堆的性质进行排序)。 代码首先定义了一个HeapSort类,其中...
算法的核心是维护一个优先队列(通常使用二叉堆),用于存储待处理的节点并按距离排序。在每一步,我们都会取出距离最小的节点,然后检查其所有邻居,如果新的路径长度比已知路径更短,就更新这些邻居的距离。 在...
在Java中,我们可以利用堆(Heap)来实现一个简单的优先队列。堆是一种二叉树形数据结构,其每个父节点的值都大于或等于其子节点的值,这样的结构被称为最大堆。 在给定的文件中,我们有两个文件:PriorityQueue....
堆的实现方式有很多种,常见的有二叉堆(Binary Heap)和斐波那契堆(Fibonacci Heap)。 二、优先队列(Priority Queue) 优先队列是一种数据结构,它能够根据优先级来存储和提取数据。优先队列的实现方式有很多...
- **Treap**:随机化的平衡二叉搜索树,结合了堆和二叉搜索树的特性,每个节点有一个优先级,通过优先级保持平衡。 4. **平衡调整策略**: - AVL树的平衡调整主要通过四种旋转操作:左旋、右旋、左右旋和右左旋,...
堆排序是一种基于二叉堆数据结构的排序算法,通过构建最大堆或最小堆,然后不断地取出堆顶元素并重新调整堆结构来实现排序。其算法步骤包括构建最大堆,交换堆顶元素和最后一个元素,调整堆结构,重复步骤直到堆的...
哈夫曼编码(Huffman Coding)是一种数据压缩算法,它基于字符出现频率构建最优的前缀编码,以达到高效存储和传输数据的目的。...通过阅读和理解这段代码,你可以深入了解哈夫曼编码的原理和Java实现细节。