`
student_lp
  • 浏览: 436530 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

java高并发编程:4--Java中的阻塞队列

阅读更多

1. 什么是阻塞队列?

阻塞队列(BlockingQueue)是一个支持两个附加操作的队列。这两个附加的操作是:在队列为空时,获取元素的线程会等待队列变为非空。当队列满时,存储元素的线程会等待队列可用。阻塞队列常用于生产者和消费者的场景,生产者是往队列里添加元素的线程,消费者是从队列里拿元素的线程。阻塞队列就是生产者存放元素的容器,而消费者也只从容器里拿元素。

阻塞队列提供了四种处理方法:

方法\处理方式 抛出异常 返回特殊值 一直阻塞 超时退出
插入方法 add(e) offer(e) put(e) offer(e,time,unit)
移除方法 remove() poll() take() poll(time,unit)
检查方法 element() peek() 不可用 不可用
  • 抛出异常:是指当阻塞队列满时候,再往队列里插入元素,会抛出IllegalStateException("Queue full")异常。当队列为空时,从队列里获取元素时会抛出NoSuchElementException异常 。
  • 返回特殊值:插入方法会返回是否成功,成功则返回true。移除方法,则是从队列里拿出一个元素,如果没有则返回null
  • 一直阻塞:当阻塞队列满时,如果生产者线程往队列里put元素,队列会一直阻塞生产者线程,直到拿到数据,或者响应中断退出。当队列空时,消费者线程试图从队列里take元素,队列也会阻塞消费者线程,直到队列可用。
  • 超时退出:当阻塞队列满时,队列会阻塞生产者线程一段时间,如果超过一定的时间,生产者线程就会退出。

2. Java里的阻塞队列

JDK7提供了7个阻塞队列。分别是

  • ArrayBlockingQueue :一个由数组结构组成的有界阻塞队列。
  • LinkedBlockingQueue :一个由链表结构组成的有界阻塞队列。
  • PriorityBlockingQueue :一个支持优先级排序的无界阻塞队列。
  • DelayQueue:一个使用优先级队列实现的无界阻塞队列。
  • SynchronousQueue:一个不存储元素的阻塞队列。
  • LinkedTransferQueue:一个由链表结构组成的无界阻塞队列。
  • LinkedBlockingDeque:一个由链表结构组成的双向阻塞队列。

ArrayBlockingQueue是一个用数组实现的有界阻塞队列。此队列按照先进先出(FIFO)的原则对元素进行排序。默认情况下不保证访问者公平的访问队列,所谓公平访问队列是指阻塞的所有生产者线程或消费者线程,当队列可用时,可以按照阻塞的先后顺序访问队列,即先阻塞的生产者线程,可以先往队列里插入元素,先阻塞的消费者线程,可以先从队列里获取元素。通常情况下为了保证公平性会降低吞吐量。我们可以使用以下代码创建一个公平的阻塞队列:

ArrayBlockingQueue fairQueue = new  ArrayBlockingQueue(1000,true);

 访问者的公平性是使用可重入锁实现的,代码如下:

public ArrayBlockingQueue(int capacity, boolean fair) {
        if (capacity <= 0)
            throw new IllegalArgumentException();
        this.items = new Object[capacity];
        lock = new ReentrantLock(fair);
        notEmpty = lock.newCondition();
        notFull =  lock.newCondition();
}
LinkedBlockingQueue是一个用链表实现的有界阻塞队列。此队列的默认和最大长度为Integer.MAX_VALUE。此队列按照先进先出的原则对元素进行排序。

PriorityBlockingQueue是一个支持优先级的无界队列。默认情况下元素采取自然顺序排列,也可以通过比较器comparator来指定元素的排序规则。元素按照升序排列。

DelayQueue是一个支持延时获取元素的无界阻塞队列。队列使用PriorityQueue来实现。队列中的元素必须实现Delayed接口,在创建元素时可以指定多久才能从队列中获取当前元素。只有在延迟期满时才能从队列中提取元素。我们可以将DelayQueue运用在以下应用场景:

  • 缓存系统的设计:可以用DelayQueue保存缓存元素的有效期,使用一个线程循环查询DelayQueue,一旦能从DelayQueue中获取元素时,表示缓存有效期到了。
  • 定时任务调度。使用DelayQueue保存当天将会执行的任务和执行时间,一旦从DelayQueue中获取到任务就开始执行,从比如TimerQueue就是使用DelayQueue实现的。

队列中的Delayed必须实现compareTo来指定元素的顺序。比如让延时时间最长的放在队列的末尾。实现代码如下:

public int compareTo(Delayed other) {
           if (other == this) // compare zero ONLY if same object
                return 0;
            if (other instanceof ScheduledFutureTask) {
                ScheduledFutureTask x = (ScheduledFutureTask)other;
                long diff = time - x.time;
                if (diff < 0)
                    return -1;
                else if (diff > 0)
                    return 1;
	   else if (sequenceNumber < x.sequenceNumber)
                    return -1;
                else
                    return 1;
            }
            long d = (getDelay(TimeUnit.NANOSECONDS) -
                      other.getDelay(TimeUnit.NANOSECONDS));
            return (d == 0) ? 0 : ((d < 0) ? -1 : 1);
        }

如何实现Delayed接口

我们可以参考ScheduledThreadPoolExecutor里ScheduledFutureTask类。这个类实现了Delayed接口。首先:在对象创建的时候,使用time记录前对象什么时候可以使用,代码如下:

ScheduledFutureTask(Runnable r, V result, long ns, long period) {
            super(r, result);
            this.time = ns;
            this.period = period;
            this.sequenceNumber = sequencer.getAndIncrement();
}

 然后使用getDelay可以查询当前元素还需要延时多久,代码如下:

public long getDelay(TimeUnit unit) {
            return unit.convert(time - now(), TimeUnit.NANOSECONDS);
        }

通过构造函数可以看出延迟时间参数ns的单位是纳秒,自己设计的时候最好使用纳秒,因为getDelay时可以指定任意单位,一旦以纳秒作为单位,而延时的时间又精确不到纳秒就麻烦了。使用时请注意当time小于当前时间时,getDelay会返回负数。

如何实现延时队列

延时队列的实现很简单,当消费者从队列里获取元素时,如果元素没有达到延时时间,就阻塞当前线程。

long delay = first.getDelay(TimeUnit.NANOSECONDS);
                    if (delay <= 0)
                        return q.poll();
                    else if (leader != null)
                        available.await();

 SynchronousQueue是一个不存储元素的阻塞队列。每一个put操作必须等待一个take操作,否则不能继续添加元素。SynchronousQueue可以看成是一个传球手,负责把生产者线程处理的数据直接传递给消费者线程。队列本身并不存储任何元素,非常适合于传递性场景,比如在一个线程中使用的数据,传递给另外一个线程使用,SynchronousQueue的吞吐量高于LinkedBlockingQueue 和 ArrayBlockingQueue。

LinkedTransferQueue是一个由链表结构组成的无界阻塞TransferQueue队列。相对于其他阻塞队列,LinkedTransferQueue多了tryTransfer和transfer方法。

transfer方法。如果当前有消费者正在等待接收元素(消费者使用take()方法或带时间限制的poll()方法时),transfer方法可以把生产者传入的元素立刻transfer(传输)给消费者。如果没有消费者在等待接收元素,transfer方法会将元素存放在队列的tail节点,并等到该元素被消费者消费了才返回。transfer方法的关键代码如下:

Node pred = tryAppend(s, haveData);
return awaitMatch(s, pred, e, (how == TIMED), nanos);

 第一行代码是试图把存放当前元素的s节点作为tail节点。第二行代码是让CPU自旋等待消费者消费元素。因为自旋会消耗CPU,所以自旋一定的次数后使用Thread.yield()方法来暂停当前正在执行的线程,并执行其他线程。

tryTransfer方法。则是用来试探下生产者传入的元素是否能直接传给消费者。如果没有消费者等待接收元素,则返回false。和transfer方法的区别是tryTransfer方法无论消费者是否接收,方法立即返回。而transfer方法是必须等到消费者消费了才返回。

对于带有时间限制的tryTransfer(E e, long timeout, TimeUnit unit)方法,则是试图把生产者传入的元素直接传给消费者,但是如果没有消费者消费该元素则等待指定的时间再返回,如果超时还没消费元素,则返回false,如果在超时时间内消费了元素,则返回true。

LinkedBlockingDeque是一个由链表结构组成的双向阻塞队列。所谓双向队列指的你可以从队列的两端插入和移出元素。双端队列因为多了一个操作队列的入口,在多线程同时入队时,也就减少了一半的竞争。相比其他的阻塞队列,LinkedBlockingDeque多了addFirst,addLast,offerFirst,offerLast,peekFirst,peekLast等方法,以First单词结尾的方法,表示插入,获取(peek)或移除双端队列的第一个元素。以Last单词结尾的方法,表示插入,获取或移除双端队列的最后一个元素。另外插入方法add等同于addLast,移除方法remove等效于removeFirst。但是take方法却等同于takeFirst,不知道是不是Jdk的bug,使用时还是用带有First和Last后缀的方法更清楚。

在初始化LinkedBlockingDeque时可以设置容量防止其过渡膨胀。另外双向阻塞队列可以运用在“工作窃取”模式中。

3. 阻塞队列的实现原理

如果队列是空的,消费者会一直等待,当生产者添加元素时候,消费者是如何知道当前队列有元素的呢?如果让你来设计阻塞队列你会如何设计,让生产者和消费者能够高效率的进行通讯呢?让我们先来看看JDK是如何实现的。

使用通知模式实现。所谓通知模式,就是当生产者往满的队列里添加元素时会阻塞住生产者,当消费者消费了一个队列中的元素后,会通知生产者当前队列可用。通过查看JDK源码发现ArrayBlockingQueue使用了Condition来实现,代码如下:

private final Condition notFull;
private final Condition notEmpty;

public ArrayBlockingQueue(int capacity, boolean fair) {
        //省略其他代码
        notEmpty = lock.newCondition();
        notFull =  lock.newCondition();
    }

public void put(E e) throws InterruptedException {
        checkNotNull(e);
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        try {
            while (count == items.length)
                notFull.await();
            insert(e);
        } finally {
            lock.unlock();
        }
}

public E take() throws InterruptedException {
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        try {
            while (count == 0)
                notEmpty.await();
            return extract();
  } finally {
            lock.unlock();
        }
}

private void insert(E x) {
        items[putIndex] = x;
        putIndex = inc(putIndex);
        ++count;
        notEmpty.signal();
    }

当我们往队列里插入一个元素时,如果队列不可用,阻塞生产者主要通过LockSupport.park(this);来实现

public final void await() throws InterruptedException {
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                LockSupport.park(this);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null) // clean up if cancelled
                unlinkCancelledWaiters();
            if (interruptMode != 0)

reportInterruptAfterWait(interruptMode);
        }

继续进入源码,发现调用setBlocker先保存下将要阻塞的线程,然后调用unsafe.park阻塞当前线程。

public static void park(Object blocker) {
        Thread t = Thread.currentThread();
        setBlocker(t, blocker);
        unsafe.park(false, 0L);
        setBlocker(t, null);
    }

unsafe.park是个native方法,代码如下:

public native void park(boolean isAbsolute, long time);

park这个方法会阻塞当前线程,只有以下四种情况中的一种发生时,该方法才会返回。

  • 与park对应的unpark执行或已经执行时。注意:已经执行是指unpark先执行,然后再执行的park。
  • 线程被中断时。
  • 如果参数中的time不是零,等待了指定的毫秒数时。
  • 发生异常现象时。这些异常事先无法确定。

我们继续看一下JVM是如何实现park方法的,park在不同的操作系统使用不同的方式实现,在linux下是使用的是系统方法pthread_cond_wait实现。实现代码在JVM源码路径src/os/linux/vm/os_linux.cpp里的 os::PlatformEvent::park方法,代码如下:

void os::PlatformEvent::park() {      
     	     int v ;
	     for (;;) {
		v = _Event ;
	     if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
	     }
	     guarantee (v >= 0, "invariant") ;
	     if (v == 0) {
	     // Do this the hard way by blocking ...
	     int status = pthread_mutex_lock(_mutex);
	     assert_status(status == 0, status, "mutex_lock");
	     guarantee (_nParked == 0, "invariant") ;
	     ++ _nParked ;
	     while (_Event < 0) {
	     status = pthread_cond_wait(_cond, _mutex);
	     // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
	     // Treat this the same as if the wait was interrupted
	     if (status == ETIME) { status = EINTR; }
	     assert_status(status == 0 || status == EINTR, status, "cond_wait");
	     }
	     -- _nParked ;
	     
	     // In theory we could move the ST of 0 into _Event past the unlock(),
	     // but then we'd need a MEMBAR after the ST.
	     _Event = 0 ;
	     status = pthread_mutex_unlock(_mutex);
	     assert_status(status == 0, status, "mutex_unlock");
	     }
	     guarantee (_Event >= 0, "invariant") ;
	     }

     }

 pthread_cond_wait是一个多线程的条件变量函数,cond是condition的缩写,字面意思可以理解为线程在等待一个条件发生,这个条件是一个全局变量。这个方法接收两个参数,一个共享变量_cond,一个互斥量_mutex。而unpark方法在linux下是使用pthread_cond_signal实现的。park 在windows下则是使用WaitForSingleObject实现的。

当队列满时,生产者往阻塞队列里插入一个元素,生产者线程会进入WAITING (parking)状态。我们可以使用jstack dump阻塞的生产者线程看到这点:

"main" prio=5 tid=0x00007fc83c000000 nid=0x10164e000 waiting on condition [0x000000010164d000]
   java.lang.Thread.State: WAITING (parking)
        at sun.misc.Unsafe.park(Native Method)
        - parking to wait for  <0x0000000140559fe8> (a java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject)
        at java.util.concurrent.locks.LockSupport.park(LockSupport.java:186)
        at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(AbstractQueuedSynchronizer.java:2043)
        at java.util.concurrent.ArrayBlockingQueue.put(ArrayBlockingQueue.java:324)
        at blockingqueue.ArrayBlockingQueueTest.main(ArrayBlockingQueueTest.java:11)

 转子:http://www.infoq.com/cn/articles/java-blocking-queue

分享到:
评论

相关推荐

    java并发编程:设计原则与模式.rar

    《Java并发编程:设计原则与模式》是一本深入探讨Java多线程编程的书籍,它涵盖了并发编程中的关键概念、原则和模式。在Java中,并发处理是优化应用程序性能、提高资源利用率的重要手段,尤其在现代多核处理器的环境...

    Java并发编程:设计原则与模式(第二版)-3PDF

    《Java并发编程:设计原则与模式(第二版)》是一本深入...以上知识点构成了《Java并发编程:设计原则与模式(第二版)》的主要内容,通过学习和实践这些知识,开发者可以更好地设计和实现高并发、高性能的Java应用。

    实战Java高并发程序设计-随书代码

    《实战Java高并发程序设计》是一本专注于Java并发编程实践的书籍,随书代码提供了大量示例,帮助读者深入理解并掌握在实际开发中如何处理高并发场景下的问题。本书的核心知识点涵盖了Java并发编程的基础理论、核心...

    Java并发编程实践--电子书.rar

    《Java并发编程实践》这本书是Java开发者深入理解并发编程的重要参考资料。...通过阅读这本书,你可以深入理解Java并发编程的理论和实践,提升你的编程能力,为构建高并发、高性能的系统打下坚实基础。

    java并发编程与高并发解决方案

    在探讨Java并发编程与高并发解决方案之前,我们首先需要理解几个关键概念:并发(Concurrency)、高并发(High Concurrency)以及多线程(Multithreading)。这些概念是现代软件开发中不可或缺的一部分,尤其是在...

    Java 并发编程:设计原则与模式

    在Java编程领域,并发编程是不可或缺的一部分,尤其是在大型分布式系统和多核处理器环境中。它涉及到如何在多个执行单元(线程或进程)之间共享资源,有效地利用计算能力,提高程序性能,同时保证程序的正确性和稳定...

    实战Java高并发程序设计-试读

    《实战Java高并发程序设计》是一本专注于Java并发编程实践的书籍,试读版提供了前两章的内容,为读者提供了一个初步了解并发编程基础的窗口。在Java领域,并发编程是构建高性能、高效率系统的关键技术,对于软件开发...

    实战Java高并发程序设计第二版随书代码

    《实战Java高并发程序设计》第二版是一本深入探讨Java多线程和并发编程的书籍。这本书涵盖了Java并发编程的核心概念和技术,旨在帮助开发者在实际项目中高效地处理高并发场景。随书附带的代码提供了丰富的示例,以便...

    一本经典的多线程书籍 Java并发编程 设计原则与模式 第二版 (英文原版)

    通过学习这本书,读者不仅可以掌握Java并发编程的核心技术,还能理解并发编程背后的理论基础,从而在实践中避免常见错误,提高代码的可维护性和可扩展性。这本书对于任何希望深入研究Java并发的开发者来说,都是一份...

    Java多线程编程实战指南-核心篇

    《Java多线程编程实战指南-核心篇》是一本深入探讨Java并发编程的书籍,旨在帮助读者掌握在Java环境中创建、管理和同步线程的核心技术。Java的多线程能力是其强大之处,使得开发者能够在同一时间执行多个任务,提高...

    《java并发编程的核心方法和框架》

    Java并发编程是Java开发中的重要领域,特别是在多核处理器和分布式系统中,高效地利用并发可以极大地提升程序的性能和响应速度。《java并发编程的核心方法和框架》这本书旨在深入探讨这一主题,帮助开发者掌握Java...

    java并发编程:设计与模式

    Java并发编程是计算机科学中一个复杂而重要的领域,主要关注如何在Java程序中合理地使用多线程以及同步机制来提高程序执行的效率和响应性。在Java中,并发编程不仅仅是关于多线程,它还涉及到内存管理、线程调度、...

    java并发编程:juc、aqs

    Java并发编程中的`JUC`(Java Util Concurrency)库是Java平台中用于处理多线程问题的核心工具包,它提供了一系列高效、线程安全的工具类,帮助开发者编写并发应用程序。`AQS`(AbstractQueuedSynchronizer)是JUC库中的...

    JAVA并发编程与高并发解决方案 JAVA高并发项目实战课程

    ##### 3.2 Java高并发的关键技术 - **缓存机制**:使用如Redis等缓存技术减少数据库访问压力。 - **负载均衡**:利用负载均衡器(如Nginx)分散请求到不同的服务器节点。 - **异步处理**:通过消息队列(如RabbitMQ...

    java虚拟机并发编程.pdf

    《Java虚拟机并发编程》这本书深入探讨了Java平台上的并发处理技术,特别是在Java虚拟机(JVM)上。这本书由知名编程导师Venkat Subramaniam撰写,旨在帮助读者掌握在JVM上进行高效并发编程的技能。 并发编程是现代...

Global site tag (gtag.js) - Google Analytics