`

TCP协议详解

阅读更多

TCP协议详解-----理论篇

 

1.    与UDP不同的是,TCP提供了一种面向连接的、可靠的字节流服务。面向连接比较好理解,就是连接双方在通信前需要预先建立一条连接,这犹如实际生活中的打电话。助于可靠性,TCP协议中涉及了诸多规则来保障通信链路的可靠性,总结起来,主要有以下几点:
      (1)应用数据分割成TCP认为最适合发送的数据块。这部分是通过“MSS”(最大数据包长度)选项来控制的,通常这种机制也被称为一种协商机制,MSS规定了TCP传往另一端的最大数据块的长度。值得注意的是,MSS只能出现在SYN报文段中,若一方不接收来自另一方的MSS值,则MSS就定为536字节。一般来讲,在不出现分段的情况下,MSS值还是越大越好,这样可以提高网络的利用率。
      (2)重传机制。设置定时器,等待确认包。
      (3)对首部和数据进行校验。
      (4)TCP对收到的数据进行排序,然后交给应用层。
      (5)TCP的接收端丢弃重复的数据。
      (6)TCP还提供流量控制。(通过每一端声明的窗口大小来提供的)
2. TCP包的首部:  www.2cto.com  


 
(1)      若不计选项字段,TCP的首部占20个字节。
(2)      源端口号以及目的端口号用于寻找发端和接收端的进程,一般来讲,通过端口号和IP地址,可以唯一确定一个TCP连接,在网络编程中,通常被称为一个socket接口。
(3)      序号是用来标识从TCP发端向TCP接收端发送的数据字节流。
(4)      确认序号包含发送确认的一端所期望收到的下一个序号,因此,确认序号应该是上次已经成功收到数据字节序号加1.
(5)      首部长度指出了TCP首部的长度值,若不存在选项,则这个值为20字节。
(6)      标志位(flag):
                URG: 紧急指针有效
                ACK:确认序号有效
                PSH:接收方应尽快将这个报文段交给应用层
                RST:重建连接
                SYN:同步序号用来发起一个连接
                FIN: 发端完成发送任务(主动关闭)    
                    
【解释】
◆     TCP提供解决方式是为了使一端告诉另外一端某些“紧急数据”已经放置在普通的数据流中,让接收端对紧急数据做特别处理。此时,URG位被置为1,并且16位的紧急数据被置为一个正的偏移量,通过此偏移量与TCP首部中的序号字段相加,可以得出紧急数据的最后一个字节的序号,常见的应用有传输中断键(在通过telnet连接过程中)。
◆     RST: 复位字段被用于当一个报文发送到某个socket接口而出现错误时,TCP则会发出复位报文段。常见出现的情况有以下几种:  www.2cto.com  
发送到不存在的端口的连接请求:此时对方的目的端口并没有侦听,对于UDP,将会发出ICMP不可达的   错误信息,而对于TCP,将会发出设置RST复位标志位的数据报。异常终止一个连接:正常情况下,通过发送FIN去正常关闭一个TCP连接,但也有可能通过发送一个复位   报文段去中途释放掉一个连接。在socketAPI中通过设置socket选 项SO_LINGER去关闭这种异常关闭的情况。
 
3. TCP的连接与终止过程:


 
(1)  三次握手:
         建立一个TCP连接,必须经历三次握手过程,其中发送第一个SYN的一端将执行主动打开,接收这个SYN并发回下一个SYN的另一端执行被动打开。
(2)  四次释放:
         要释放一个TCP连接,需要通过四次握手过程,这是由TCP的半关闭特性造成的,因为TCP连接时全双工的,因此,需要TCP两端要单独执行关闭。值得注意的是,主动关闭的一端在发送FIN之后,依然还能正常接收对方的数据,只是通知对方它已经没有数据需要发送了,同理,被动关闭的一端在收到FIN之后,仍然可以发送数据,直到它自身同样发出FIN之后,才停止发送数据。
 
(3)  TCP连接的超时问题:
         完成一个TCP连接,中间涉及到一个超时的问题,大多数伯克利系统的超时时限为75s,Solaris9的超时时限为240s,因此,一般认为是在75-240之间。
【引申】在具体的实现中,如何由用户自己去完成设置socket连接超时时间?
【解决方法】目前实现socket超时连接主要是通过select来完成的。具体步骤如下:
    ◆     建立socket
    ◆     将socket设置为非阻塞模式(若是阻塞模式,那么时间设置就毫无意义)
    ◆     调用connect去进行连接
    ◆     使用select检查socket是否可写,并同时判断其结果(为什么是可写?因为需要检测socket是否收到ACK。)
    ◆     将socket转化为阻塞模式
 
(4)TCP的半关闭  www.2cto.com  
         所谓“半关闭”,是指连接的一端在结束它的发送之后还能接收到对方发过来的数据的能力。具体表现在,当完成三次握手的双方,其中有一端发出FIN,此时它将进入半关
闭状态,此时它关闭了自身的发送功能,但是它依然可以接收到对方的数据,如对方发过来的ACK消息。那么在实际开发中,是怎么实现的呢?
这牵涉到系统中shutdown和close函数的区别问题。
        int shutdown(int s, int how)       <sys/socket.h>
         shutdown是用来终止参数s所指定的socket接口,参数how主要有以下几种情况:
         how = 0    终止读取操作
         how = 1    终止写入操作
         how = 2    终止读取和写入操作
         返回的errorcode可能有:
         EBADF  /* Bad file descriptor */
         ENOTSOCK  /* Socket operation on non-socket */
         ENOTCONN  /* Socket is not connected */
 
【引用】
    Big difference between shutdown and close on a socket is thebehavior when the socket is shared by other processes.A shutdown() affects all copies of the socket whileclose() affects only the file descriptor in one process.
    Even if you close() a TCP socket, it won't necessarily beimmediately reusable anyway, since it will be in a TIME_WAITstate while the OS makes sure there's no outstandingpackets that might get confused as new information if you were to immediatelyreuse that socket for something else.
【注意】
当shutdown关闭读取部分时,则会丢掉接收缓冲区中的任何数据,并关闭该端的连接,若是关闭写入部分,TCP则会发送剩余的数据,然后终止连接的写入端。
 
4. TCP的状态变迁图:


 
几个状态解析:
(1)     TIME_WAIT状态
    这种状态也称为2MSL等待状态,MSL即一个报文段的最长生存时间,也就是报文在网络中被丢弃前的最长时间。那么为什么需要等待2倍的MSL呢?这是因为在TIME_WAIT状态之后,需要执行主动关闭,发送ACK,同时还需要加上一倍的MSL,为了等待对方的反馈结果(是否收到重发的FIN),这是因为再发送ACK之后,可能因为诸多原因而导致ACK发送失败,此时Server端会在此发送FIN。
     正常情况下,client在2MSL期间,对应的socket是不能再被使用的,但是在具体的实现中(如伯克利),则可以通过SO_REUSEADDR选项重用此接口。
(2)     FIN_WAIT_2状态
     当对方对自己发送的FIN进行了确认,此时将进入FIN_WAIT_2状态。
(3) CLOSE_WAIT状态与FIN_WAIT_1状态
     当连接中的一方收到对方发过来的FIN时,它将进入CLOSE_WAIT状态,而另一端则进入FIN_WAIT_1状态。  www.2cto.com  
    
5. TCP中流量控制机制——滑动窗口
      受到诸多因素的影响,如硬件(双方网卡吞吐量差异)、网络环境,网络极易出现各种各样的拥塞,目前所采取的措施主要有以下两种:改进拥塞算法以及控制发送端和接收端的流量。本节主要讲述如何在接收端和发送端进行流量控制。
(1)滑动窗口——接收端
      在讲解滑动窗口协议之前,可以回顾下最初人们为了在接收端实施流量控制所提出了的经典算法——停止等待算法,其核心思想是:接收端在收到一个数据报之后,停止接收新的数据报,直到发出ACK(对收到的数据报的确认)之后进行恢复。算法思想以及实现非常简单,但是却遇到一个效率的问题,特别是随着网络设备的数据处理能力得到了很大的提高,效率低下显得尤其明显,后来人们也尝试了多种改进措施,如本节的滑动窗口就是其中之一。
      其基本原理是:在接收端存在一个接收缓存区,用来接收来自于发送方的数据,只有当应用进程从接收缓存区中取出数据(可能只是部分)并发出其ACK后,才算作这部分数据已经接收,然后调节此时的滑动窗口大小。发送方根据返回的窗口大小,计算出所能发送的数据大小。因此,可以这么理解,滑动窗口算法是接收端作为主动方根据自身的缓存以及处理能力主动去调节对方的发送流量的一种调节算法。
      下面通过一个滑动窗口模型图了解下发送方是如何处理所收到的滑动窗口的?


 
在发送方依然存在一个缓存区(发送缓存区),其发送的数据可以是下面几种状态:
◆ 发送并确认 (1-3)
◆ 发送但未确认 (4-6)  www.2cto.com  
◆ 可以发送 (7-9)
◆ 不能够发送 (10以后)
      值得注意的是,滑动窗口是基于所收到的确认序列号的。当发送方根据所收到的确认序列号以及窗口大小,不断向后移动,并相应更新数据状态。
                                                                            
(2)滑动窗口——发送端(拥塞窗口)
     网络拥塞出现的原因是多方面的,除了收发两段的硬件差异之外,还与网络通信链路相关,如通信链路中转发路由器的缓存,试想这样一种情况,若发送端与接收端的处理能力以及吞吐能力很强,若它仅仅通过接收端所返回的滑动窗口大小,难以阻止数据报在被路由器转发过程中因为阻塞而被丢弃的情形,因为与发送端相连的路由器因为自身的缓冲空间的限制,难以存储并转发这么多数据而出现丢包现象。那么这种情况如何避免呢?最好的机制是中间的路由器也要参与给发送端反馈窗口大小的事情,也正是本节所说的拥塞窗口。
      综合上面的阐述,发送端会收到两个窗口大小,分别是来自于接收端和中间路由器,注意前者在每次的数据报中都会出现,而后者只是在网络中出现拥塞时由中间路由器发送。那么,发送方此时取接收端的窗口大小与拥塞窗口中的最小值作为发送上限值。
分享到:
评论

相关推荐

    级联H桥SVG无功补偿系统在不平衡电网中的三层控制策略:电压电流双闭环PI控制、相间与相内电压均衡管理,级联H桥SVG无功补偿系统在不平衡电网中的三层控制策略:电压电流双闭环PI控制、相间与相内电压均

    级联H桥SVG无功补偿系统在不平衡电网中的三层控制策略:电压电流双闭环PI控制、相间与相内电压均衡管理,级联H桥SVG无功补偿系统在不平衡电网中的三层控制策略:电压电流双闭环PI控制、相间与相内电压均衡管理,不平衡电网下的svg无功补偿,级联H桥svg无功补偿statcom,采用三层控制策略。 (1)第一层采用电压电流双闭环pi控制,电压电流正负序分离,电压外环通过产生基波正序有功电流三相所有H桥模块直流侧平均电压恒定,电流内环采用前馈解耦控制; (2)第二层相间电压均衡控制,注入零序电压,控制通过注入零序电压维持相间电压平衡; (3)第三层相内电压均衡控制,使其所有子模块吸收的有功功率与其损耗补,从而保证所有H桥子模块直流侧电压值等于给定值。 有参考资料。 639,核心关键词: 1. 不平衡电网下的SVG无功补偿 2. 级联H桥SVG无功补偿STATCOM 3. 三层控制策略 4. 电压电流双闭环PI控制 5. 电压电流正负序分离 6. 直流侧平均电压恒定 7. 前馈解耦控制 8. 相间电压均衡控制 9. 零序电压注入 10. 相内电压均衡控制 以上十个关键词用分号分隔的格式为:不

    GTX 1080 PCB图纸

    GTX 1080 PCB图纸,内含图纸查看软件

    深度优化与应用:提升DeepSeek润色指令的有效性和灵活性指南

    内容概要:本文档详细介绍了利用 DeepSeek 进行文本润色和问答交互时提高效果的方法和技巧,涵盖了从明确需求、提供适当上下文到尝试开放式问题以及多轮对话的十个要点。每一部分内容都提供了具体的示范案例,如指定回答格式、分步骤提问等具体实例,旨在指导用户更好地理解和运用 DeepSeek 提升工作效率和交流质量。同时文中还强调了根据不同应用场景调整提示词语气和风格的重要性和方法。 适用人群:适用于希望通过优化提问技巧以获得高质量反馈的企业员工、科研人员以及一般公众。 使用场景及目标:本文针对所有期望提高 DeepSeek 使用效率的人群,帮助他们在日常工作中快速获取精准的答案或信息,特别是在撰写报告、研究材料准备和技术咨询等方面。此外还鼓励用户通过不断尝试不同形式的问题表述来进行有效沟通。 其他说明:该文档不仅关注实际操作指引,同样重视用户思维模式转变——由简单索取答案向引导 AI 辅助创造性解决问题的方向发展。

    基于FPGA与W5500实现的TCP网络通信测试平台开发-Zynq扩展口Verilog编程实践,基于FPGA与W5500芯片的TCP网络通信测试及多路Socket实现基于zynq开发平台和Vivad

    基于FPGA与W5500实现的TCP网络通信测试平台开发——Zynq扩展口Verilog编程实践,基于FPGA与W5500芯片的TCP网络通信测试及多路Socket实现基于zynq开发平台和Vivado 2019软件的扩展开发,基于FPGA和W5500的TCP网络通信 测试平台 zynq扩展口开发 软件平台 vivado2019.2,纯Verilog可移植 测试环境 压力测试 cmd命令下ping电脑ip,同时采用上位机进行10ms发包回环测试,不丢包(内部数据回环,需要时间处理) 目前实现单socket功能,多路可支持 ,基于FPGA; W5500; TCP网络通信; Zynq扩展口开发; 纯Verilog可移植; 测试平台; 压力测试; 10ms发包回环测试; 单socket功能; 多路支持。,基于FPGA与W5500的Zynq扩展口TCP通信测试:可移植Verilog实现的高效网络通信

    Labview液压比例阀伺服阀试验台多功能程序:PLC通讯、液压动画模拟、手动控制与调试、传感器标定、报警及记录、自动实验、数据处理与查询存储,报表生成与打印一体化解决方案 ,Labview液压比例阀

    Labview液压比例阀伺服阀试验台多功能程序:PLC通讯、液压动画模拟、手动控制与调试、传感器标定、报警及记录、自动实验、数据处理与查询存储,报表生成与打印一体化解决方案。,Labview液压比例阀伺服阀试验台多功能程序:PLC通讯、液压动画模拟、手动控制与调试、传感器标定、报警管理及实验自动化,labview液压比例阀伺服阀试验台程序:功能包括,同PLC通讯程序,液压动画,手动控制及调试,传感器标定,报警设置及报警记录,自动实验,数据处理曲线处理,数据库存储及查询,报表自动生成及打印,扫码枪扫码及信号录入等~ ,核心关键词:PLC通讯; 液压动画; 手动控制及调试; 传感器标定; 报警设置及记录; 自动实验; 数据处理及曲线处理; 数据库存储及查询; 报表生成及打印; 扫码枪扫码。,Labview驱动的智能液压阀测试系统:多功能控制与数据处理

    华为、腾讯、万科员工职业发展体系建设与实践.pptx

    华为、腾讯、万科员工职业发展体系建设与实践.pptx

    基于遗传算法的柔性车间调度优化 附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    电网不对称故障下VSG峰值电流限制的柔性控制策略:实现电流平衡与功率容量的优化利用,电网不对称故障下VSG峰值电流限制的柔性控制策略:兼顾平衡电流与功率控制切换的动态管理,电网不对称故障下VSG峰值电

    电网不对称故障下VSG峰值电流限制的柔性控制策略:实现电流平衡与功率容量的优化利用,电网不对称故障下VSG峰值电流限制的柔性控制策略:兼顾平衡电流与功率控制切换的动态管理,电网不对称故障下VSG峰值电流限制的柔性不平衡控制(文章完全复现)。 提出一种在不平衡运行条件下具有峰值电流限制的可变不平衡电流控制方法,可灵活地满足不同操作需求,包括电流平衡、有功或无功恒定运行(即电流控制、有功控制或无功控制之间的相互切),注入电流保持在安全值内,以更好的利用VSG功率容量。 关键词:VSG、平衡电流控制、有功功率控制、无功功率控制。 ,VSG; 峰值电流限制; 柔性不平衡控制; 电流平衡控制; 有功功率控制; 无功功率控制。,VSG柔性控制:在电网不对称故障下的峰值电流限制与平衡管理

    libpinyin-tools-0.9.93-4.el7.x64-86.rpm.tar.gz

    1、文件内容:libpinyin-tools-0.9.93-4.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/libpinyin-tools-0.9.93-4.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊

    机器学习(预测模型):动漫《龙珠》相关的数据集

    数据集是一个以经典动漫《龙珠》为主题的多维度数据集,广泛应用于数据分析、机器学习和图像识别等领域。该数据集由多个来源整合而成,涵盖了角色信息、战斗力、剧情片段、台词以及角色图像等多个方面。数据集的核心内容包括: 角色信息:包含《龙珠》系列中的主要角色及其属性,如名称、种族、所属系列(如《龙珠》《龙珠Z》《龙珠超》等)、战斗力等级等。 图像数据:提供角色的图像资源,可用于图像分类和角色识别任务。这些图像来自动画剧集、漫画和相关衍生作品。 剧情与台词:部分数据集还包含角色在不同故事中的台词和剧情片段,可用于文本分析和自然语言处理任务。 战斗数据:记录角色在不同剧情中的战斗力变化和战斗历史,为研究角色成长和剧情发展提供支持。 数据集特点 多样性:数据集整合了角色、图像、文本等多种类型的数据,适用于多种研究场景。 深度:不仅包含角色的基本信息,还涵盖了角色的成长历程、技能描述和与其他角色的互动关系。 实用性:支持多种编程语言(如Python、R)的数据处理和分析,提供了详细的文档和示例代码。

    基于protues仿真的多功公交站播报系统设计(仿真图、源代码)

    基于protues仿真的多功公交站播报系统设计(仿真图、源代码) 该设计为基于protues仿真的多功公交站播报系统,实现温度显示、时间显示、和系统公交站播报功能; 具体功能如下: 1、系统使用51单片机为核心设计; 2、时钟芯片进行时间和日期显示; 3、温度传感器进行温度读取; 4、LCD12864液晶屏进行相关显示; 5、按键设置调节时间; 6、按键设置报站; 7、仿真图、源代码; 操作说明: 1、下行控制报站:首先按下(下行设置按键),(下行指示灯)亮,然后按下(手动播报)按键控制播报下一站; 2、上行控制报站:首先按上(上行设置按键),(上行指示灯)亮,然后按下(手动播报)按键控制播报下一站; 3、按下关闭播报按键,则关闭播报功能和清除显示

    基于微信小程序的琴房管理系统的设计与实现.zip

    采用Java后台技术和MySQL数据库,在前台界面为提升用户体验,使用Jquery、Ajax、CSS等技术进行布局。 系统包括两类用户:学生、管理员。 学生用户 学生用户只要实现了前台信息的查看,打开首页,查看网站介绍、琴房信息、在线留言、轮播图信息公告等,通过点击首页的菜单跳转到对应的功能页面菜单,包括网站首页、琴房信息、注册登录、个人中心、后台登录。 学生用户通过账户账号登录,登录后具有所有的操作权限,如果没有登录,不能在线预约。学生用户退出系统将注销个人的登录信息。 管理员通过后台的登录页面,选择管理员权限后进行登录,管理员的权限包括轮播公告管理、老师学生信息管理和信息审核管理,管理员管理后点击退出,注销登录信息。 管理员用户具有在线交流的管理,琴房信息管理、琴房预约管理。 在线交流是对前台用户留言内容进行管理,删除留言信息,查看留言信息。

    界面GUI设计MATLAB教室人数统计.zip

    MATLAB可以用于开发人脸识别考勤系统。下面是一个简单的示例流程: 1. 数据采集:首先收集员工的人脸图像作为训练数据集。可以要求员工提供多张照片以获得更好的训练效果。 2. 图像预处理:使用MATLAB的图像处理工具对采集到的人脸图像进行预处理,例如灰度化、裁剪、缩放等操作。 3. 特征提取:利用MATLAB的人脸识别工具包,如Face Recognition Toolbox,对处理后的图像提取人脸特征,常用的方法包括主成分分析(PCA)和线性判别分析(LDA)等。 4. 训练模型:使用已提取的人脸特征数据集训练人脸识别模型,可以选择支持向量机(SVM)、卷积神经网络(CNN)等算法。 5. 考勤系统:在员工打卡时,将摄像头捕获的人脸图像输入到训练好的模型中进行识别,匹配员工信息并记录考勤数据。 6. 结果反馈:根据识别结果,可以自动生成考勤报表或者实时显示员工打卡情况。 以上只是一个简单的步骤,实际开发过程中需根据具体需求和系统规模进行定制和优化。MATLAB提供了丰富的图像处理和机器学习工具,是开发人脸识别考勤系统的一个很好选择。

    hjbvbnvhjhjg

    hjbvbnvhjhjg

    HCIP、软考相关学习PPT

    HCIP、软考相关学习PPT提供下载

    绿豆BOX UI8版:反编译版六个全新UI+最新后台直播管理源码

    绿豆BOX UI8版:反编译版六个全新UI+最新后台直播管理源码 最新绿豆BOX反编译版六个UI全新绿豆盒子UI8版本 最新后台支持直播管理 作为UI6的升级版,UI8不仅修复了前一版本中存在的一些BUG,还提供了6套不同的UI界面供用户选择,该版本有以下特色功能: 在线管理TVBOX解析 在线自定义TVBOX 首页布局批量添加会员信息 并支持导出批量生成卡密 并支持导出直播列表管理功能

    vue3的一些语法以及知识点

    vue3的一些语法以及知识点

    西门子大型Fanuc机器人汽车焊装自动生产线程序经典解析:PLC博图编程与MES系统通讯实战指南,西门子PLC博图汽车焊装自动生产线FANUC机器人程序经典结构解析与MES系统通讯,西门子1500 大

    西门子大型Fanuc机器人汽车焊装自动生产线程序经典解析:PLC博图编程与MES系统通讯实战指南,西门子PLC博图汽车焊装自动生产线FANUC机器人程序经典结构解析与MES系统通讯,西门子1500 大型程序fanuc 机器人汽车焊装自动生产线程序 MES 系统通讯 大型程序fanuc机器人汽车焊装自动生产线程序程序经典结构清晰,SCL算法堆栈,梯形图和 SCL混编使用博图 V14以上版本打开 包括: 1、 PLC 博图程序 2 触摸屏程序 ,西门子1500; 大型程序; fanuc机器人; 汽车焊装自动生产线; MES系统通讯; SCL算法; 梯形图; SCL混编; 博图V14以上版本。,西门子博图大型程序:汽车焊装自动生产线MES系统通讯与机器人控制

    DeepSeek:从入门到精通

    DeepSeek:从入门到精通

    计及信息间隙决策与多能转换的综合能源系统优化调度模型:实现碳经济最大化与源荷不确定性考量,基于信息间隙决策与多能转换的综合能源系统优化调度模型:源荷不确定性下的高效碳经济调度策略,计及信息间隙决策及多

    计及信息间隙决策与多能转换的综合能源系统优化调度模型:实现碳经济最大化与源荷不确定性考量,基于信息间隙决策与多能转换的综合能源系统优化调度模型:源荷不确定性下的高效碳经济调度策略,计及信息间隙决策及多能转的综合能源系统优化调度 本代码构建了含风电、光伏、光热发电系统、燃气轮机、燃气锅炉、电锅炉、储气、储电、储碳、碳捕集装置的综合能源系统优化调度模型,并考虑P2G装置与碳捕集装置联合运行,从而实现碳经济的最大化,最重要的是本文引入了信息间隙决策理论考虑了源荷的不确定性(本代码的重点)与店铺的47代码形成鲜明的对比,注意擦亮眼睛,认准原创,该代码非常适合修改创新,,提供相关的模型资料 ,计及信息间隙决策; 综合能源系统; 优化调度; 多能转换; 碳经济最大化; 风电; 光伏; 燃气轮机; 储气; 储电; 储碳; 碳捕集装置; P2G装置联合运行; 模型资料,综合能源系统优化调度模型:基于信息间隙决策和多能转换的原创方案

Global site tag (gtag.js) - Google Analytics