看到这篇文章,感觉对数据分析一些点总结蛮好的,分享给大家。数据分析要产生真正的价值,或者说要让业务方,管理层感觉到真正的价值,其实需要非常多的东西:
1、要有数据,而且的确需要足够多的数据。是正常的数据积累。
2、分析师能不能把业务方的问题理解透,请注意是透,而不是理解了。
3、真正知道目前公司资源,在给出建议与方案的时候能结合公司实际情况,也就是接地气。
曾经有个运营总监告诉说,有个分析师给我做了个分析,运营目标要完成,最重要提提升流量,因为转化率提升太难,需要涉及到东西太多了。流量提长就是要引入流量,然后做了各个渠道的分析,各个流量测算。
他说:然并卵,我就是没有钱,有钱还要你说.....,还要找你分析什么啊!!!
好了,扯扯一起来看看本文吧!
1.走得太快,没空回头看路
初创公司里的人们仿佛一直在被人念着紧箍咒:“要么快要么死,要么快要么死。”他们是如此着急于产品开发,以至于他们常常没有空想用户对产品的具体使用细节,产品在哪些场景怎么被使用,产品的哪些部分被使用,以及用户回头二次使用产品的原因主要有哪些。而这些问题如果没有数据难以回答。
2.你没有记录足够的数据
光给你的团队看呈现总结出来的数据是没有用的。如果没有精确到日乃至小时的变化明细,你无法分析出来数据变化背后看不见的手。如果只是粗放的,断续的统计,没有人可以解读出各种细微因素对于销售或者用户使用习惯的影响。
与此同时,数据储存越来越便宜。同时做大量的分析也不是什么高风险的事情,只要买足够的空间就不会有system breakdown的风险。因此,记录尽可能多的数据总不会是一件坏事。
不要害怕量大。对于初创企业来说,大数据其实还是比较少见的事情。如果正处于初创期的你果真(幸运地)有这样的困扰,Porterfield(本文)推荐使用一个叫Hadoop的平台。
3.其实你的团队成员常常感觉自己在盲人摸象
许多公司以为他们把数据扔给Mixpanel, Kissmetrics,或者Google Analytics就够了,但他们常常忽略了团队的哪些成员能真正解读这些数据的内在含义。你需要经常提醒团队里面每一位成员多去理解这些数据,并更多地基于数据来做决策。要不然,你的产品团队只会盲目地开发产品,并祈祷能踩中热点,不管最终成功还是失败了都是一头雾水。
举例:
有天你决定采用市场上常见的病毒营销手段吸引新用户。如你所愿,用户量啪啪啪地上来了。可此时你会遇到新的迷茫:你无法衡量这个营销手段对老用户的影响。人们可能被吸引眼球,注册为新用户,然后厌倦而不再使用。你可能为吸引了一帮没有价值的用户付出了过高的代价。而你的产品团队可能还在沾沾自喜,认为这个损害产品的营销手段是成功的。
这种傻错误经常发生。而如果你的企业在一开始就建立起人人可自助使用的数据平台,来解答他们工作中最重要的疑惑,则可以避免上文所说的悲剧。
4.把数据存放在不合适的地方
先让我们来看一个正确示范吧。Porerfield提到他有个客户整合了NoSQL, Redshift,Kitnesis以及Looker的资源自创了一个数据分析框架。这个框架不仅能在很高的量级上捕获及储存自己的数据,还能承受每月数以百万计的点击流量,还能让所有人查询自己想要的数据。这个系统甚至可以让不懂SQL语言的小白用户们真正理解数据的意义。而在数据分析的世界里,基本上如果你不会SQL, 你就完蛋了。如果总是要等待工程师去把数据跑出来,那就是把自己陷入困境。而工程师在不理解需求的情况下建立的算法或者买的软件对于使用者来说往往是个煎熬,因为他们对数据的使用往往与前者不再同一水平线上。
你需要让你所有的数据都存放在同一个地方。这个是关键关键最关键的原则。
让我们回到前文那个假设存在的公司。他们做了一个又一个病毒营销,但是没有把用户活动数据放在同一框架内,所以他们无法分析一个活动是如何关联到另一个活动的。他们也无法进行一个横跨日常运营以及活动期间的数据分析比较。
很多公司把数据发给外包商储存,然后就当甩手掌柜了。可是常常这些数据到了外包商手里就会变成其他形式,而转化回来则需要不少工序。这些数据往往是某些宣传造势活动时期你的网站或者产品的相关数据。结合日常运营数据来看,你可以挖掘哪些活动促成了用户转化。而这样结合日常运营数据来分析用户使用历程的方式是至关重要的。但令人震惊的是,尽管任何时期的所有运营数据都至关重要,许多公司仍不屑于捕获及记录他们。约一半以上Porterfield所见过的公司都将日常运营数据与活动数据分开来看。这样严重妨碍了公司正确地理解与决策。
5.目光短浅
任何一个好的数据分析框架在设计之初都必须满足长期使用的需要。诚然,你总是可以调整你的框架。但数据积累越多,做调整的代价越大。而且常常做出调整后,你需要同时记录新旧两套系统来确保数据不会丢失。
因此,我们最好能在第一天就把框架设计好。其中一个简单粗暴有效地方法就是所有能获取的数据放在同一个可延展的平台。不需要浪费时间选择一个最优解决方法,只要确认这个平台可以装得下所有将来可能用到的数据,且跨平台也能跑起来就行了。一般来说这样的原始平台能至少支撑一到两年。
6.过度总结
虽然说这个问题对于拥有大数据分析团队的公司来说更常见,初创公司最好也能注意避免掉。试想一下,有多少公司只是记录平均每分钟多少销售额,而不是具体每一分钟销售了多少金额?在过去由于运算能力有限,我们只能把海量数据总结成几个点来看。但在当下,这些运算量根本不是问题,所有人都可以把运营数据精确到分钟来记录。而这些精确的记录可以告诉你海量的信息,比如为什么转化率在上升或者下降。
人们常常自我陶醉于做出了几张漂亮的图标或者PPT。这些总结性的表达看上去很令人振奋,但我们不应该基于这些肤浅的总结来做决策,因为这些漂亮的总结性陈述并不能真正反映问题的实质。相反,我们更应该关注极端值(Outliers)。(来源:数据海洋)
分享到:
相关推荐
1. 数据分析人员在进行数据分析时,需要具有高度的责任感和道德标准,确保分析结果的准确性和公正性,避免误导决策。 2. 应当谨慎对待数据分析结果,并且在预测和决策中考虑数据之外的多种因素。 总结以上内容,...
数据分析是现代商业决策的核心工具,它涉及多个方面,包括思维方法、工具技能、业务理解和实践应用。WPS2019的数据分析加载项是提升工作效率的重要辅助,它可以帮助用户进行高效的数据管理和分析。 首先,数据分析...
《梯控数据分析工具助手详解与应用》 在现代城市建筑中,电梯已成为不可或缺的一部分,而电梯控制系统的数据管理与分析则是保障电梯安全、高效运行的关键环节。本文将深入探讨“梯控数据分析工具助手”这一专业工具...
- 数据分析方法论强调因果关系和相关关系的理解,通过系统分析揭示业务的本质,避免基于错误假设的决策。 - 分析必须与企业执行相结合,成为持续的过程,而非一次性的项目。 7. **数据演进** - 从信息化到数字化...
然而,在实际操作中,数据分析师经常会遇到一些常见的错误。以下是对这些错误的详细解释和解决策略: 1. **数据类型错误**:当尝试将不同数据类型进行不兼容的操作时,会出现错误。例如,将字符串与数字混合使用。...
数据输入时要注意避免错误,可以使用数据验证功能设定数据范围和格式。格式化数据可以使报表更加清晰易读,如设置单元格为货币、日期或百分比格式。排序功能则有助于我们快速整理和查找信息。 其次,掌握函数和公式...
这一流程通常分为多个阶段,包括明确数据分析目标、数据采集、数据处理、数据分析、数据展现以及撰写数据分析报告。 首先,明确数据分析目标是整个流程的起点。这需要确定数据分析的意图,比如优化营销策略、提升...
第二,面板数据分析需要考虑面板数据的特点和规律,以避免错误的结论。 第三,面板数据分析需要结合实际情况和具体问题,以避免错误的结论。 面板数据分析步骤总结可以帮助我们更好地理解面板数据的特点和规律,...
《IC卡数据分析与校验计算全面解析》 在信息技术领域,IC卡因其小巧便携、安全可靠的特点,广泛应用于各种身份认证、支付系统以及数据存储等场景。然而,与之相关的数据分析和校验计算工作却是一项技术性极强的任务...
首先,数据分析的框架通常遵循CRISP-DM(Cross-Industry Standard Process for Data Mining)流程,该流程包括业务理解、数据理解、数据准备、建立模型、评估模型和部署等六个阶段。业务理解要求深入理解业务背景和...
此外,Anaconda是一个流行的Python分发版,包含了众多数据分析所需的库和工具。 8. **关键词输入**:用户可能通过一个简单的命令行接口或交互式界面输入关键词,程序会根据这些关键词动态抓取和分析相关的论文信息...
总之,基于Python的二手房数据分析是一个系统的过程,包括数据的获取、预处理、分析和可视化。通过这个过程,我们可以深入洞察房地产市场的运行规律,为投资决策提供科学依据。对于初学者来说,本文提供的代码示例是...
在数理统计数据分析中,MATLAB是一个非常强大的工具,它提供了丰富的函数库和直观的界面,使得复杂的数学计算和数据处理变得简单。本资源“matlab数理统计数据分析:22 matlab调试错误分析(含教学视频).zip”旨在...
**搭建数据分析体系常犯错误**是丢失重点、目标,陷入指标细节;贪大求全的使用同一套指标而不加以区分职责。 **数据分析要旨**在于解释数据背后的业务含义,找到**对业务有用的价值点**。 **数据分析体系**...
数据分析通常遵循六个步骤:确定目标、数据收集、数据处理、统计分析、数据挖掘和结果展示。在数据收集阶段,Excel是一个常用工具,对于复杂分析,可能还需要利用如SPSS Statistics等专业软件。数据准备是关键,确保...
数据分析中常见的误区包括:展示元素不宜大于3个、时间序列数据最好使用折线图、研究用数据最好不使用三维立体图、避免图表的欺骗性等。 10. 数据分析的原则 数据分析的原则包括:坚持用数据说话、有目的地收集...
综上所述,"数据分析在仓储管理中的应用"涵盖了预测、库存控制、仓库布局优化、损耗管理等多个方面,是提升仓储运营效率的关键。这份文档很可能会详细阐述这些概念,并给出实际案例和解决方案,对于从事仓储管理或者...
Excel将日期视为大于零的正整数,用户应避免错误的日期格式输入,如使用点号或连字符。遇到非法日期,可以通过修改或转换来确保其正确性。文本和数字的处理同样重要,文本型数字需转换为数值以进行计算,而数值转...