- 浏览: 891888 次
- 来自: ...
最新评论
-
maycolour:
唉,居然在系统里存在一个同样名字和代码类似的程序~~~~~~~ ...
SAP的BOM删除和维护 -
linghanjunzi:
真经典,总结了那么多的资料,很有用处,如果楼主再更新一下,把无 ...
C++--CListCtrl使用技巧的摘抄 -
harry_2013:
还可以这样啊
EDITOR-CALL语句的使用:修改abap内表的内容(代码摘抄) -
elin_yi:
你好,上面代码中的INCLUDE zheading.
可是ZH ...
BDC program for Purchase Info Records (ME11) -
byfhd:
you are stronger!
如何提高读取BSEG的性能(sap已清项和未清项的提取)
一消息编码与解码
用C实现7-bit编码和解码的算法如下:
// 7-bit编码
// pSrc: 源字符串指针
// pDst: 目标编码串指针
// nSrcLength: 源字符串长度
// 返回: 目标编码串长度
int gsmEncode7bit(const char* pSrc, unsigned char* pDst, int nSrcLength)
{
int nSrc; // 源字符串的计数值
int nDst; // 目标编码串的计数值
int nChar; // 当前正在处理的组内字符字节的序号,范围是0-7
unsigned char nLeft; // 上一字节残余的数据
// 计数值初始化
nSrc = 0;
nDst = 0;
// 将源串每8个字节分为一组,压缩成7个字节
// 循环该处理过程,直至源串被处理完
// 如果分组不到8字节,也能正确处理
while(nSrc<nSrcLength)
{
// 取源字符串的计数值的最低3位
nChar = nSrc & 7;
// 处理源串的每个字节
if(nChar == 0)
{
// 组内第一个字节,只是保存起来,待处理下一个字节时使用
nLeft = *pSrc;
}
else
{
// 组内其它字节,将其右边部分与残余数据相加,得到一个目标编码字节
*pDst = (*pSrc << (8-nChar)) | nLeft;
// 将该字节剩下的左边部分,作为残余数据保存起来
nLeft = *pSrc >> nChar;
// 修改目标串的指针和计数值 pDst++;
nDst++;
}
// 修改源串的指针和计数值
pSrc++; nSrc++;
}
// 返回目标串长度
return nDst;
}
// 7-bit解码
// pSrc: 源编码串指针
// pDst: 目标字符串指针
// nSrcLength: 源编码串长度
// 返回: 目标字符串长度
int gsmDecode7bit(const unsigned char* pSrc, char* pDst, int nSrcLength)
{
int nSrc; // 源字符串的计数值
int nDst; // 目标解码串的计数值
int nByte; // 当前正在处理的组内字节的序号,范围是0-6
unsigned char nLeft; // 上一字节残余的数据
// 计数值初始化
nSrc = 0;
nDst = 0;
// 组内字节序号和残余数据初始化
nByte = 0;
nLeft = 0;
// 将源数据每7个字节分为一组,解压缩成8个字节
// 循环该处理过程,直至源数据被处理完
// 如果分组不到7字节,也能正确处理
while(nSrc<nSrcLength)
{
// 将源字节右边部分与残余数据相加,去掉最高位,得到一个目标解码字节
*pDst = ((*pSrc << nByte) | nLeft) & 0x7f;
// 将该字节剩下的左边部分,作为残余数据保存起来
nLeft = *pSrc >> (7-nByte);
// 修改目标串的指针和计数值
pDst++;
nDst++;
// 修改字节计数值
nByte++;
// 到了一组的最后一个字节
if(nByte == 7)
{
// 额外得到一个目标解码字节
*pDst = nLeft;
// 修改目标串的指针和计数值
pDst++;
nDst++;
// 组内字节序号和残余数据初始化
nByte = 0;
nLeft = 0;
}
// 修改源串的指针和计数值
pSrc++;
nSrc++;
}
*pDst = 0;
// 返回目标串长度
return nDst;
}
需要指出的是,7-bit的字符集与ANSI标准字符集不完全一致,在0x20以下也排布了一些可打印字符,但英文字母、阿拉伯数字和常用符号的位置两者是一样的。用上面介绍的算法收发纯英文短消息,一般情况应该是够用了。如果是法语、德语、西班牙语等,含有 “?”、 “é”这一类字符,则要按上面编码的输出去查表,请参阅GSM 03.38的规定。
8-bit编码其实没有规定什么具体的算法,不需要介绍。
UCS2编码是将每个字符(1-2个字节)按照ISO/IEC10646的规定,转变为16位的Unicode宽字符。在Windows系统中,特别是在2000/XP中,可以简单地调用API 函数实现编码和解码。如果没有系统的支持,比如用单片机控制手机模块收发短消息,只好用查表法解决了。
Windows环境下,用C实现UCS2编码和解码的算法如下:
// UCS2编码
// pSrc: 源字符串指针
// pDst: 目标编码串指针
// nSrcLength: 源字符串长度
// 返回: 目标编码串长度
int gsmEncodeUcs2(const char* pSrc, unsigned char* pDst, int nSrcLength)
{
int nDstLength; // UNICODE宽字符数目
WCHAR wchar[128]; // UNICODE串缓冲区
// 字符串-->UNICODE串
nDstLength = ::MultiByteToWideChar(CP_ACP, 0, pSrc, nSrcLength, wchar, 128);
// 高低字节对调,输出
for(int i=0; i<nDstLength; i++)
{
// 先输出高位字节
*pDst++ = wchar[i] >> 8;
// 后输出低位字节
*pDst++ = wchar[i] & 0xff;
}
// 返回目标编码串长度
return nDstLength * 2;
}
// UCS2解码
// pSrc: 源编码串指针
// pDst: 目标字符串指针
// nSrcLength: 源编码串长度
// 返回: 目标字符串长度
int gsmDecodeUcs2(const unsigned char* pSrc, char* pDst, int nSrcLength)
{
int nDstLength; // UNICODE宽字符数目
WCHAR wchar[128]; // UNICODE串缓冲区
// 高低字节对调,拼成UNICODE
for(int i=0; i<nSrcLength/2; i++)
{
// 先高位字节
wchar[i] = *pSrc++ << 8;
// 后低位字节
wchar[i] |= *pSrc++;
}
// UNICODE串-->字符串
nDstLength = ::WideCharToMultiByte(CP_ACP, 0, wchar, nSrcLength/2, pDst, 160, NULL, NULL);
// 输出字符串加个结束符
pDst[nDstLength] = '\0';
// 返回目标字符串长度
return nDstLength;
}
用以上编码和解码模块,还不能将短消息字符串编码为PDU串需要的格式,也不能直接将PDU串中的用户信息解码为短消息字符串,因为还差一个在可打印字符串和字节数据之间相互转换的环节。可以循环调用sscanf和sprintf函数实现这种变换。下面提供不用这些函数的算法,它们也适用于单片机、DSP编程环境。
// 可打印字符串转换为字节数据
// 如:"C8329BFD0E01" --> {0xC8, 0x32, 0x9B, 0xFD, 0x0E, 0x01}
// pSrc: 源字符串指针
// pDst: 目标数据指针
// nSrcLength: 源字符串长度
// 返回: 目标数据长度
int gsmString2Bytes(const char* pSrc, unsigned char* pDst, int nSrcLength)
{
for(int i=0; i<nSrcLength; i+=2)
{
// 输出高4位
if(*pSrc>='0' && *pSrc<='9')
{
*pDst = (*pSrc - '0') << 4;
}
else
{
*pDst = (*pSrc - 'A' + 10) << 4;
}
pSrc++;
// 输出低4位
if(*pSrc>='0' && *pSrc<='9')
{
*pDst |= *pSrc - '0';
}
else
{
*pDst |= *pSrc - 'A' + 10;
}
pSrc++;
pDst++;
}
// 返回目标数据长度
returnnSrcLength / 2;
}
// 字节数据转换为可打印字符串
// 如:{0xC8, 0x32, 0x9B, 0xFD, 0x0E, 0x01} --> "C8329BFD0E01"
// pSrc: 源数据指针
// pDst: 目标字符串指针
// nSrcLength: 源数据长度
// 返回: 目标字符串长度
int gsmBytes2String(const unsigned char* pSrc, char* pDst, int nSrcLength)
{
const char tab[]="0123456789ABCDEF"; // 0x0-0xf的字符查找表
for(int i=0; i<nSrcLength; i++)
{
// 输出低4位
*pDst++ = tab[*pSrc >> 4];
// 输出高4位
*pDst++ = tab[*pSrc & 0x0f];
pSrc++;
}
// 输出字符串加个结束符
*pDst = '\0';
// 返回目标字符串长度
return nSrcLength * 2;
}
2消息发送
// 用户信息编码方式
#define GSM_7BIT 0
#define GSM_8BIT 4
#define GSM_UCS2 8
// 短消息参数结构,编码/解码共用
// 其中,字符串以0结尾
typedef struct {
char SCA[16]; // 短消息服务中心号码(SMSC地址)
char TPA[16]; // 目标号码或回复号码(TP-DA或TP-RA)
char TP_PID; // 用户信息协议标识(TP-PID)
char TP_DCS; // 用户信息编码方式(TP-DCS)
char TP_SCTS[16]; // 服务时间戳字符串(TP_SCTS), 接收时用到
char TP_UD[161]; // 原始用户信息(编码前或解码后的TP-UD)
char index; // 短消息序号,在读取时用到
} SM_PARAM;
大家已经注意到PDU串中的号码和时间,都是两两颠倒的字符串。利用下面两个函数可进行正反变换:
// 正常顺序的字符串转换为两两颠倒的字符串,若长度为奇数,补'F'凑成偶数
// 如:"8613851872468" --> "683158812764F8"
// pSrc: 源字符串指针
// pDst: 目标字符串指针
// nSrcLength: 源字符串长度
// 返回: 目标字符串长度
int gsmInvertNumbers(const char* pSrc, char* pDst, int nSrcLength)
{
int nDstLength; // 目标字符串长度
char ch; // 用于保存一个字符
// 复制串长度
nDstLength = nSrcLength;
// 两两颠倒
for(int i=0; i<nSrcLength;i+=2)
{
ch = *pSrc++; // 保存先出现的字符
*pDst++ = *pSrc++; // 复制后出现的字符
*pDst++ = ch; // 复制先出现的字符
}
// 源串长度是奇数吗?
if(nSrcLength & 1)
{
*(pDst-2) = 'F'; // 补'F'
nDstLength++; // 目标串长度加1
}
// 输出字符串加个结束符
*pDst = '\0';
// 返回目标字符串长度
return nDstLength;
}
// 两两颠倒的字符串转换为正常顺序的字符串
// 如:"683158812764F8" --> "8613851872468"
// pSrc: 源字符串指针
// pDst: 目标字符串指针
// nSrcLength: 源字符串长度
// 返回: 目标字符串长度
int gsmSerializeNumbers(const char* pSrc, char* pDst, int nSrcLength)
{
int nDstLength; // 目标字符串长度
char ch; // 用于保存一个字符
// 复制串长度
nDstLength = nSrcLength;
// 两两颠倒
for(int i=0; i<nSrcLength;i+=2)
{
ch = *pSrc++; // 保存先出现的字符
*pDst++ = *pSrc++; // 复制后出现的字符
*pDst++ = ch; // 复制先出现的字符
}
// 最后的字符是'F'吗?
if(*(pDst-1) == 'F')
{
pDst--;
nDstLength--; // 目标字符串长度减1
}
// 输出字符串加个结束符
*pDst = '\0';
// 返回目标字符串长度
return nDstLength;
}
以下是PDU全串的编解码模块。为简化编程,有些字段用了固定值。
// PDU编码,用于编制、发送短消息
// pSrc: 源PDU参数指针
// pDst: 目标PDU串指针
// 返回: 目标PDU串长度
int gsmEncodePdu(const SM_PARAM* pSrc, char* pDst)
{
int nLength; // 内部用的串长度
int nDstLength; // 目标PDU串长度
unsigned char buf[256]; // 内部用的缓冲区
// SMSC地址信息段
nLength = strlen(pSrc->SCA); // SMSC地址字符串的长度
buf[0] = (char)((nLength & 1) == 0 ? nLength : nLength + 1) / 2 + 1; // SMSC地址信息长度
buf[1] = 0x91; // 固定: 用国际格式号码
nDstLength = gsmBytes2String(buf, pDst, 2); // 转换2个字节到目标PDU串
nDstLength += gsmInvertNumbers(pSrc->SCA, &pDst[nDstLength], nLength); // 转换SMSC到目标PDU串
// TPDU段基本参数、目标地址等
nLength = strlen(pSrc->TPA); // TP-DA地址字符串的长度
buf[0] = 0x11; // 是发送短信(TP-MTI=01),TP-VP用相对格式(TP-VPF=10)
buf[1] = 0; // TP-MR=0
buf[2] = (char)nLength; // 目标地址数字个数(TP-DA地址字符串真实长度)
buf[3] = 0x91; // 固定: 用国际格式号码
nDstLength += gsmBytes2String(buf, &pDst[nDstLength], 4); // 转换4个字节到目标PDU串
nDstLength += gsmInvertNumbers(pSrc->TPA, &pDst[nDstLength], nLength); // 转换TP-DA到目标PDU串
// TPDU段协议标识、编码方式、用户信息等
nLength = strlen(pSrc->TP_UD); // 用户信息字符串的长度
buf[0] = pSrc->TP_PID; // 协议标识(TP-PID)
buf[1] = pSrc->TP_DCS; // 用户信息编码方式(TP-DCS)
buf[2] = 0; // 有效期(TP-VP)为5分钟
if(pSrc->TP_DCS == GSM_7BIT)
{
// 7-bit编码方式
buf[3] = nLength; // 编码前长度
nLength = gsmEncode7bit(pSrc->TP_UD, &buf[4], nLength+1) + 4; // 转换TP-DA到目标PDU串
}
else if(pSrc->TP_DCS == GSM_UCS2)
{
// UCS2编码方式
buf[3] = gsmEncodeUcs2(pSrc->TP_UD, &buf[4], nLength); // 转换TP-DA到目标PDU串
nLength = buf[3] + 4; // nLength等于该段数据长度
}
else
{
// 8-bit编码方式
buf[3] = gsmEncode8bit(pSrc->TP_UD, &buf[4], nLength); // 转换TP-DA到目标PDU串
nLength = buf[3] + 4; // nLength等于该段数据长度
}
nDstLength += gsmBytes2String(buf, &pDst[nDstLength], nLength); // 转换该段数据到目标PDU串
// 返回目标字符串长度
return nDstLength;
}
// PDU解码,用于接收、阅读短消息
// pSrc: 源PDU串指针
// pDst: 目标PDU参数指针
// 返回: 用户信息串长度
int gsmDecodePdu(const char* pSrc, SM_PARAM* pDst)
{
int nDstLength; // 目标PDU串长度
unsigned char tmp; // 内部用的临时字节变量
unsigned char buf[256]; // 内部用的缓冲区
// SMSC地址信息段
gsmString2Bytes(pSrc, &tmp, 2); // 取长度
tmp = (tmp - 1) * 2; // SMSC号码串长度
pSrc += 4; // 指针后移
gsmSerializeNumbers(pSrc, pDst->SCA, tmp); // 转换SMSC号码到目标PDU串
pSrc += tmp; // 指针后移
// TPDU段基本参数、回复地址等
gsmString2Bytes(pSrc, &tmp, 2); // 取基本参数
pSrc += 2; // 指针后移
if(tmp & 0x80)
{
// 包含回复地址,取回复地址信息
gsmString2Bytes(pSrc, &tmp, 2); // 取长度
if(tmp & 1) tmp += 1; // 调整奇偶性
pSrc += 4; // 指针后移
gsmSerializeNumbers(pSrc, pDst->TPA, tmp); // 取TP-RA号码
pSrc += tmp; // 指针后移
}
// TPDU段协议标识、编码方式、用户信息等
gsmString2Bytes(pSrc, (unsigned char*)&pDst->TP_PID, 2); // 取协议标识(TP-PID)
pSrc += 2; // 指针后移
gsmString2Bytes(pSrc, (unsigned char*)&pDst->TP_DCS, 2); // 取编码方式(TP-DCS)
pSrc += 2; // 指针后移
gsmSerializeNumbers(pSrc, pDst->TP_SCTS, 14); // 服务时间戳字符串(TP_SCTS)
pSrc += 14; // 指针后移
gsmString2Bytes(pSrc, &tmp, 2); // 用户信息长度(TP-UDL)
pSrc += 2; // 指针后移
if(pDst->TP_DCS == GSM_7BIT)
{
// 7-bit解码
nDstLength = gsmString2Bytes(pSrc, buf, tmp & 7 ? (int)tmp * 7 / 4 + 2 : (int)tmp * 7 / 4); // 格式转换
gsmDecode7bit(buf, pDst->TP_UD, nDstLength); // 转换到TP-DU
nDstLength = tmp;
}
else if(pDst->TP_DCS == GSM_UCS2)
{
// UCS2解码
nDstLength = gsmString2Bytes(pSrc, buf, tmp * 2); // 格式转换
nDstLength = gsmDecodeUcs2(buf, pDst->TP_UD, nDstLength); // 转换到TP-DU
}
else
{
// 8-bit解码
nDstLength = gsmString2Bytes(pSrc, buf, tmp * 2); // 格式转换
nDstLength = gsmDecode8bit(buf, pDst->TP_UD, nDstLength); // 转换到TP-DU
}
// 返回目标字符串长度
return nDstLength;
}
依照GSM 07.05,发送短消息用AT+CMGS命令,阅读短消息用AT+CMGR命令,列出短消息用AT+CMGL命令,删除短消息用AT+CMGD命令。但AT+CMGL命令能够读出所有的短消息,所以我们用它实现阅读短消息功能,而没用AT+CMGR。下面是发送、读取和删除短消息的实现代码:
// 发送短消息
// pSrc: 源PDU参数指针
BOOL gsmSendMessage(const SM_PARAM* pSrc)
{
int nPduLength; // PDU串长度
unsigned char nSmscLength; // SMSC串长度
int nLength; // 串口收到的数据长度
char cmd[16]; // 命令串
char pdu[512]; // PDU串
char ans[128]; // 应答串
nPduLength = gsmEncodePdu(pSrc, pdu); // 根据PDU参数,编码PDU串
strcat(pdu, "\x01a"); // 以Ctrl-Z结束
gsmString2Bytes(pdu, &nSmscLength, 2); // 取PDU串中的SMSC信息长度
nSmscLength++; // 加上长度字节本身
// 命令中的长度,不包括SMSC信息长度,以数据字节计
sprintf(cmd, "AT+CMGS=%d\r", nPduLength / 2 - nSmscLength); // 生成命令
WriteComm(cmd, strlen(cmd)); // 先输出命令串
nLength = ReadComm(ans, 128); // 读应答数据
// 根据能否找到"\r\n> "决定成功与否
if(nLength == 4 && strncmp(ans, "\r\n> ", 4) == 0)
{
WriteComm(pdu, strlen(pdu)); // 得到肯定回答,继续输出PDU串
nLength = ReadComm(ans, 128); // 读应答数据
// 根据能否找到"+CMS ERROR"决定成功与否
if(nLength > 0 && strncmp(ans, "+CMS ERROR", 10) != 0)
{
return TRUE;
}
}
return FALSE;
}
// 读取短消息
// 用+CMGL代替+CMGR,可一次性读出全部短消息
// pMsg: 短消息缓冲区,必须足够大
// 返回: 短消息条数
int gsmReadMessage(SM_PARAM* pMsg)
{
int nLength; // 串口收到的数据长度
int nMsg; // 短消息计数值
char* ptr; // 内部用的数据指针
char cmd[16]; // 命令串
char ans[1024]; // 应答串
nMsg = 0;
ptr = ans;
sprintf(cmd, "AT+CMGL\r"); // 生成命令
WriteComm(cmd, strlen(cmd)); // 输出命令串
nLength = ReadComm(ans, 1024); // 读应答数据
// 根据能否找到"+CMS ERROR"决定成功与否
if(nLength > 0 && strncmp(ans, "+CMS ERROR", 10) != 0)
{
// 循环读取每一条短消息, 以"+CMGL:"开头
while((ptr = strstr(ptr, "+CMGL:")) != NULL)
{
ptr += 6; // 跳过"+CMGL:"
sscanf(ptr, "%d", &pMsg->index); // 读取序号
TRACE(" index=%d\n",pMsg->index);
ptr = strstr(ptr, "\r\n"); // 找下一行
ptr += 2; // 跳过"\r\n"
gsmDecodePdu(ptr, pMsg); // PDU串解码
pMsg++; // 准备读下一条短消息
nMsg++; // 短消息计数加1
}
}
return nMsg;
}
// 删除短消息
// index: 短消息序号,从1开始
BOOL gsmDeleteMessage(const int index)
{
int nLength; // 串口收到的数据长度
char cmd[16]; // 命令串
char ans[128]; // 应答串
sprintf(cmd, "AT+CMGD=%d\r", index); // 生成命令
// 输出命令串
WriteComm(cmd, strlen(cmd));
// 读应答数据
nLength = ReadComm(ans, 128);
// 根据能否找到"+CMS ERROR"决定成功与否
if(nLength > 0 && strncmp(ans, "+CMS ERROR", 10) != 0)
{
return TRUE;
}
return FALSE;
}
以上发送AT命令过程中用到了WriteComm和ReadComm函数,它们是用来读写串口的,依赖于具体的操作系统。在Windows环境下,除了用MSComm控件,以及某些现成的串口通信类之外,也可以简单地调用一些Windows API用实现。以下是利用API实现的主要代码,注意我们用的是超时控制的同步(阻塞)模式。
// 串口设备句柄
HANDLE hComm;
// 打开串口
// pPort: 串口名称或设备路径,可用"COM1"或"\\.\COM1"两种方式,建议用后者
// nBaudRate: 波特率
// nParity: 奇偶校验
// nByteSize: 数据字节宽度
// nStopBits: 停止位
BOOL OpenComm(const char* pPort, int nBaudRate, int nParity, int nByteSize, int nStopBits)
{
DCB dcb; // 串口控制块
COMMTIMEOUTS timeouts = { // 串口超时控制参数
100, // 读字符间隔超时时间: 100 ms
1, // 读操作时每字符的时间: 1 ms (n个字符总共为n ms)
500, // 基本的(额外的)读超时时间: 500 ms
1, // 写操作时每字符的时间: 1 ms (n个字符总共为n ms)
100}; // 基本的(额外的)写超时时间: 100 ms
hComm = CreateFile(pPort, // 串口名称或设备路径
GENERIC_READ | GENERIC_WRITE, // 读写方式
0, // 共享方式:独占
NULL, // 默认的安全描述符
OPEN_EXISTING, // 创建方式
0, // 不需设置文件属性
NULL); // 不需参照模板文件
if(hComm == INVALID_HANDLE_VALUE) return FALSE; // 打开串口失败
GetCommState(hComm, &dcb); // 取DCB
dcb.BaudRate = nBaudRate;
dcb.ByteSize = nByteSize;
dcb.Parity = nParity;
dcb.StopBits = nStopBits;
SetCommState(hComm, &dcb); // 设置DCB
SetupComm(hComm, 4096, 1024); // 设置输入输出缓冲区大小
SetCommTimeouts(hComm, &timeouts); // 设置超时
return TRUE;
}
// 关闭串口
BOOL CloseComm()
{
return CloseHandle(hComm);
}
// 写串口
// pData: 待写的数据缓冲区指针
// nLength: 待写的数据长度
void WriteComm(void* pData, int nLength)
{
DWORD dwNumWrite; // 串口发出的数据长度
WriteFile(hComm, pData, (DWORD)nLength, &dwNumWrite, NULL);
}
// 读串口
// pData: 待读的数据缓冲区指针
// nLength: 待读的最大数据长度
// 返回: 实际读入的数据长度
int ReadComm(void* pData, int nLength)
{
DWORD dwNumRead; // 串口收到的数据长度
ReadFile(hComm, pData, (DWORD)nLength, &dwNumRead, NULL);
return (int)dwNumRead;
}
相关推荐
在IT领域,尤其是在嵌入式系统和物联网(IoT)应用中,GPRS通信和短信服务(SMS)是常见的数据传输方式。本文将详细讲解基于Linux环境下的C++实现的SMS中文短信解码编码,以及GPRS通信类的原理和应用。 首先,"SMS中文...
【SMS短信平台代码】是一个基于JAVA语言开发的短信发送系统,它提供了发送短信、接收短信以及可能的管理功能。此平台对于需要批量发送验证码、通知或者进行其他短信交互的业务非常有用。源代码的开放性使得开发者...
sms短信的c语言代码,用单片机控制GPRS
SmS4 c语言算法实现
标题中的“SMS代码.rar_AT 短信_sms_sms_VC_短信_短信源代码”表明这是一个关于SMS(Short Message Service,短信)的编程项目,使用了AT命令与VC++(Visual C++)进行开发,其中包含了短信发送的源代码。...
本文将深入探讨C语言中处理SMS短信的PDU编码和解码。 1. **PDU编码**: PDU编码是GSM 03.40标准定义的一种编码方式,用于在GSM网络中传输短信。它将短信内容转换为二进制格式,以便通过网络传输。PDU编码包括两...
集结了所有的短信错误代码,包括SMSC,SCP,DSMP,ISMG返回的错误代码
包含PDU编码、解码的一些算法
"C# SMS短信发送代码"这个标题表明我们将探讨如何使用C#编写程序来发送短信。 在描述中提到"FORM.CS文件",这是ASP.NET或Windows Forms应用程序中用于定义用户界面的文件。在这里,它可能包含了用于输入短信内容、...
【SMS短信平台源代码解析】 短信平台是一种用于批量发送和接收短信的应用系统,通常由通信协议处理、短信编码解码、数据库管理、用户接口等多个模块组成。本篇将重点解析基于JAVA开发的短信平台源代码及其核心知识...
标题中的"Gsm手机发短信 SMS 开发库C++源代码.zip"表明这是一个关于GSM(全球系统移动通信)手机发送短信功能的C++开发库。这个库可能包含了用于编写应用程序,使得用户能够通过C++代码控制GSM手机发送和接收短信的...
"SMS短信返回错误代码集合"是一个集中的资源,包含了SMSC(Short Message Service Center,短信服务中心)、DSMP(Distributed Short Message Protocol,分布式短消息协议)、SCP(Service Control Point,业务控制...
【标题】中的“用C语言写的手机短信收发程序代码”表示我们将要探讨的是一个使用C语言编写的软件,该软件具有发送和接收手机短信的功能。C语言是一种基础且广泛使用的编程语言,常用于系统级编程和嵌入式开发,包括...
在本文中,我们将深入探讨如何使用C语言实现SMS消息的编码和解码,特别是7-bit编码和解码,以及UCS2编码。首先,我们关注7-bit编码和解码算法。 7-bit编码是一种用于SMS(Short Message Service)的编码方式,它...
SMS4算法原理与实现_密码学源代码_C语言程序_C++程序源代码
标题中的"SMS.rar"暗示了这是一个关于手机短信功能的资源包,可能包含了一个动态链接库(DLL)文件,这是Windows操作系统中用于共享代码和数据的文件类型。DLL允许多个程序同时使用同一段代码,节省内存并简化软件的...
在给定的压缩包文件中,"sms4.c"是C语言实现的SMS4算法源代码。C语言是一种底层、高效的编程语言,非常适合编写这种需要性能优化的密码学算法。源代码可能包含以下几个部分: 1. **数据结构定义**:定义了用于存储...
本示例代码主要用于讲解如何使用C语言控制短信猫(Modem)进行短信的发送与接收。短信猫是一种硬件设备,通过串行接口与计算机连接,允许计算机通过GSM网络收发短信。 首先,我们来看`Sms_Send.cpp`和`Sms_Send.h`...
"云通信SMS短信服务平台系统,短信发送系统"是一款专为商业和企业用户设计的高效通信解决方案,它基于云端技术提供短信服务,具有高度稳定性和安全性。这个系统的主要功能包括批量发送短信、验证码发送、营销短信推...
【标题】"SMS短信客户端源码"涉及到的关键技术与知识点主要集中在MFC、SMS协议、Socket编程以及VC++上。以下是对这些领域的详细介绍: 1. MFC(Microsoft Foundation Classes): MFC是微软提供的一套C++类库,...