软件架构实际上包括:代码架构,以及承载代码运行的硬件部署架构。实际上,硬件部署架构最终还是由代码的架构来决定。
因为代码架构不合理,是无法把一个运行单元分拆出多个来的,那么硬件架构能分拆的就非常的有限,整个系统最终很难长的更大。
所以我们经常会听说,重写代码,推翻原有架构,重新设计等等说法,来说明架构的进化。
这实际上就是当初为了完成任务,没有充分思考所带来的后果。这也并不是架构进化的事情,而是个人对问题领域的逐渐深入理解的过程。
所以有必要再讨论一下,代码的架构应该是怎样的。
本文会进一步探讨如何把架构的思考进行落地,细化到我们代码的实践当中,尽量不要让代码成为系统长大的瓶颈,降低架构分拆的成本。
在前面我们提到,软件实际上是对现实生活的模拟,虚拟化。这是一个非常重要的前提,直接决定了我们的代码应该分为几部分。结合每个部署单元所承担的责任,可以明确的拆分为两个不同的责任:
- 表达业务逻辑的代码。很多人把这部分叫做Domain Logic,或者叫Domain Model。这部分实际是来源于生活的,必须保持和现实生活中的切分一致,并非人为的抽象而成。
- 对用户提供访问并保存业务逻辑运行结果的代码。计算机的状态保存有一个缺陷,本机保留业务运行结果有很大的问题,一般都在外存储设备上保存,也便于扩展。
所以单个部署单元的代码可以分为两个部分,如下图所示:
从这个图中可以看出,软件代码的相关利益人为运行时的访问人员和存储设备。而service的代码是最复杂的,需要服务于三方,代码人员的负担是最重的。
为了把这三方的变化对service的影响降到最低,对于service还必须进一步的分拆为三个部分,让每一个部分都能够独立的变化,这样这三方的变化就不会产生连锁响应,降低成本。如下图所示:
这样,就划分成了几个责任:
- Service就专注于user的需求,并组合Glue Code提供的服务完成需求。
- Glue Code专注于组合business的调用,管理Business里面对象的生命周期,并且通过Repository保存或加载Business的状态
- Business专注于实现业务的核心模型。
- Repository专注于数据的保存,并和存储设备一一对应。
大家注意看,还是树形架构。并且左侧的主要需要计算机的相关理论知识,并且要直接面对用户的需求。
右侧的更多的需要面对业务的核心。只要这几块的开发人员互相商量好了接口定义,这几个部分的开发就可以并行的进行,极大的提升开发的效率,缩短开发的时间。
要做好这几部分,还需要注意,逻辑只允许存在于Business中,Service、Glue Code、Repository都不允许存在业务逻辑。为什么呢?首先我们来看看什么叫业务逻辑。
1什么叫业务逻辑?
首先这个定义的前提是指软件代码中的逻辑,不是现实生活中的逻辑。在软件代码中,不需缩进和计算的顺序调用,包括缩进的代码目的是catch exception的,都不算逻辑,除此以外都是逻辑。
以下用严格的顺序调用来指代这种代码。因为顺序调用是计算机的特性,由编译器来决定的,当然最本质的是因为我们计算的基础都是图灵机。
在现实生活中,顺序调用也是逻辑,大家不要和我们这里说的业务逻辑相混淆。
为什么说除了Business代码中有逻辑以外,其他地方不能有逻辑呢? 我们每个部分分别分析:
- 如果service里面不是严格的顺序调用,有很多分支,那么说明这个service做了两件或者两件以上的事情。必须把这个service分拆,确保每个service只做一件事情。
因为如果不这么分拆的话,一旦这个service中的某各部分发生变动,其他的部分的执行必定会受影响。而确定到底有哪些影响的沟通成本非常高,其他相关利益方没有动力去配合,我们往往不会投入精力仔细评估。
最后上线会出很多不可预料的问题,最终会导致损失用户的利益,并且肯定会导致返工,损坏自己的利益。如果是有计算的逻辑的话,比如受益计算,订单金额计算等,那么这部分应该是Business代码需要完成的,不能交给service代码来实现。
- Glue Code里面如果不是严格的顺序调用,同理会和service一样遇到同样的问题。
- Repository里面如果不是严格的顺序调用,包括存储访问的代码里面(比如SQL),会导致逻辑进入到存储设备中。
存储设备的主要目的是拿来存储的,一旦变成了逻辑计算的主体,就会导致存储设备无法通过增加机器的方式横向扩展长大。这个时候就没有架构了,只能换性能更好的机器,这个叫scale up。只有scale out才能算架构。
以上都会导致架构无法快速的横向扩展和分拆,并且增加了修改的成本,这些是不符合开发人员以及业务的利益的。
2这么做的好处有哪些呢?
- Service、Glue Code、Repository里面的代码是严格的顺序调用,那么这些代码只要做连通性测试即可,不需要单元测试。因为这些代码都需要和很多上下文打交道,很难做单元测试。这样才算是真正的组合。
- Business不访问任何上下文,不访问任何具体的设备,所以这部分代码是非常容易些单元测试的,并且单元测试必须100%覆盖。
因为其他地方没有业务逻辑,所以一旦有问题,就可以断定是Model的问题,单元测试肯定可以发现。如果单元测试没有发现问题,那么单元测试一定有问题。线上问题的模拟也就变得非常的简单,单元测试也能够得到进一步的补充。
- Repository很容易按照存储设备本身的最小访问粒度来完成工作,比如DB,完全可以做到单表访问。
因为这个时候存储设备只关心存取数据,完全和业务没有关系。做表的分拆也是非常容易的事情,存储设备通过增加机器就可以横向扩展长大。很多人会担心说,没有了join,访问DB的次数是不是更多了,会导致性能下降?
按照现在网络的条件,网络访问和Disk IO访问的差距已经不大了,合理的设计下,多访问几次DB并不会导致这个问题。另外如果多台DB的话,还能通过并行加速访问。
- 由于Service、Glue Code、Repository代码简单了,才可以让我们的开发人员投入更多的时间研究业务,毕竟这部分才是软件所真正服务的对象。
我们再来看一个实际的例子,如下图所示:
Manager类实际就是Glue Code。有几个注意点需要说明一下:
- 不能把Business Model当做数据对象来处理,Model关心的实际上是业务行为,数据只是是这些行为的结果。所以Glue Code需要把Model转换为Entity,Entity和存储设备里面的存储粒度一一对应。
比如在DB中,每个Entity对应一张表,并且跟着表的变化而变化,这样就保证存储的变更不会影响Model。同样Service和用户之间的数据交互,也是不会和Model之间相关的,确保用户的需求变化,不会影响到Model。
因为用户的需求变化是最频繁的,没有逻辑,可以让我快速的满足业务的需求。
- 在Service这里,最好不要考虑代码重用。因为当多个不同的角色访问同一个接口,一旦某个角色的需求发生了变化,就会要求开发人员去修改。
而这个修改往往会影响到其他的角色,需要这些角色一起配合来确定是否受影响,但是这些角色因为没有需求,往往不会配合。这样就给开发人员造成了很多不必要的沟通,成本是非常高的。
最终都会导致线上Bug,影响最终的用户。所以尽量给不同的角色不同的Service,避免重用,降低沟通成本。很多人会说这样Service不就太多了吗? 这样Service注册,查找等管理需求就出现了,Service治理中心就是来解决这个问题的。
因为Service里面没有逻辑,所以开发和管理非常的简单,可以快速应对业务的变化。我们只有更快地变,更容易的变,才能更好地应对变。
- Business Model是必须要重用的,一旦发现重用出现问题,那么说明Business Model的识别出现了问题,这是一个我们要重新思考Model的信号。
Business Model必须是一个完美的树状,如果不是,也说明Model的识别出了问题。
在实际操作中,Service、Glue Code、Repository不能有逻辑,实际上和很多人的观念是冲突的,认为这个根本做不到。做到这一点需要很多的学习成本,但是一定可以做得到。
当发现做不到的时候,可以断定是业务的分析出了问题。比如不该合并的合并了,不该计算的计算了。这个问题一定有办法解决的,做不到都是理由,无非是想早点把自己的工作结束罢了。
虽然刚开始会比较困难,一旦把这个观念变成自觉,开发的质量和效率马上就能高好几个级别。
我的游泳教练曾和我说过这些话,我至今记忆犹新:“业余选手,越想从水里浮起来,就越想把头抬起来,身体反而沉下去。只有克服恐惧,把头往水里压下去,身体才能够从水里浮起来。真正专业的习惯往往是和我们日常的行为相反的”。
我们真正想快速的完成代码工作,就要克服自己对时间的恐惧,真正的去研究业务的问题,相关stakeholder的利益,把这个变成我们的习惯。
写代码的时候让该出现逻辑的地方出现逻辑,让不该出现的地方不能出现。一旦不该出现的地方出现了逻辑,那么要马上意识到,这个地方是一个坑,这个问题一定和业务的分析不透彻有关系。
很多人可能会把这个做法和Martin Fowler曾经提出过充血模型和贫血模型来比较,和Domain Driven Design来比较,其实没有必要。
这个分拆完全是从软件所解决的问题,根据软件架构推导出来的,很多地方和两位前辈的观点是一致的,但是并不完全等同。
以上只是针对单一的Service部署单元的分析,扩展开去,对于其他的部署单元也是类似的。每个单元的下一级都可以认为是Repository,每个单元的上一级都可以认为是User。
这些实践在我自己的项目中都有用到,非常的有效,迭代的速度非常的快。很多人担心Business Model建不好,其实没关系,刚开始可以粗糙一点,后续可以慢慢的完善。
这个架构已经隔离好了每个部分的变化对其他部分的影响,变化成本都在可控的范围之内。
http://www.techug.com/written-code
相关推荐
"基于Comsol的采空区阴燃现象研究:速度、氧气浓度、瓦斯浓度与温度分布的二维模型分析",comsol采空区阴燃。 速度,氧气浓度,瓦斯浓度及温度分布。 二维模型。 ,comsol; 采空区; 阴燃; 速度; 氧气浓度; 瓦斯浓度; 温度分布; 二维模型;,"COMSOL模拟采空区阴燃:速度、浓度与温度分布的二维模型研究"
安全驱动的边云数据协同策略研究.pdf
MATLAB代码实现电-气-热综合能源系统耦合优化调度模型:精细电网、气网与热网协同优化,保姆级注释参考文档详可查阅。,MATLAB代码:电-气-热综合能源系统耦合优化调度 关键词:综合能源系统 优化调度 电气热耦合 参考文档:自编文档,非常细致详细,可联系我查阅 仿真平台:MATLAB YALMIP+cplex gurobi 主要内容:代码主要做的是一个考虑电网、热网以及气网耦合调度的综合能源系统优化调度模型,考虑了电网与气网,电网与热网的耦合,算例系统中,电网部分为10机39节点的综合能源系统,气网部分为比利时20节点的配气网络,潮流部分电网是用了直流潮流,气网部分也进行了线性化的操作处理,代码质量非常高,保姆级的注释以及人性化的模块子程序,所有数据均有可靠来源 ,关键词:MATLAB代码; 电-气-热综合能源系统; 耦合优化调度; 电网; 热网; 气网; 潮流; 直流潮流; 线性化处理; 保姆级注释; 人性化模块子程序; 可靠数据来源。,MATLAB代码:电-气-热综合能源系统耦合优化调度模型(保姆级注释,数据来源可靠)
内容概要:本文详细探讨了人工智能(AI)对就业市场的深远影响及其发展趋势。首先介绍了到2027年,44%的工人核心技能将受技术变革尤其是AI影响的事实,并提及自动化可能取代部分工作的现象。其次指出虽然某些职位面临风险,但也带来了全新的职业机遇与现有角色改进的可能性,关键在于人类要学会借助AI释放自身潜力并培养软实力,以适应快速发展的科技需求。再者,强调终身学习理念下企业和教育培训须革新教学手段与评估机制,以便紧跟AI进化速率,为个体和社会持续注入新动力。最后提到了教育机构应当加快调整步伐以匹配技术变革的速度,并利用AI实现个性化的教育,进而提升学习者的适应能力和解决问题的能力。 适用人群:政策制定者、企业管理层、在职人员及教育工作者,还有广大学生群体均能从中获得启示。 使用场景及目标:面向关注未来职场动向及教育发展方向的专业人士,提供前瞻性思考角度,助力各界积极规划职业生涯路径或调整教育资源分配策略。 其他说明:本文综合多位行业领袖的观点展开讨论,旨在唤起社会各界共同思考AI带来的变革及对策,而非单方面渲染危机感。
2025最新空调与制冷作业考试题及答案.doc
2025最新初级电工证考试题及答案.docx
飞剪PLC控制系统——采用西门子S7-200SMART和触摸屏实现智能化操控及图纸详述,飞锯追剪程序,PLC和触摸屏采用西门子200smart,包含图纸,触摸屏程序和PLC程序。 ,核心关键词:飞锯追剪程序; 西门子200smart; PLC程序; 触摸屏程序; 图纸; 控制系统。,"西门子200smart飞锯追剪系统程序包:含图纸、PLC与触摸屏程序"
使用PyQt6制作的Python应用程序。
三相桥式整流电路双闭环控制策略:电压外环与电流内环协同优化研究,三相桥式整流电路双闭环控制 电流内环 电压外环(也有开环控制) 采用电压电流双闭环控制,在电压、电流控制电路中,电压单环控制易于设计和分析,但是响应速度慢,无限流功能。 而电流环能增强电路稳定性、响应速度快。 三相桥式全控整流电路由整流变压器、阴极相连接的晶闸管(VT1, VT3, VT5)、阳极相连接的晶闸管(VT4, VT6, VT2)、负载、触发器和同步环节组成(如图1),6个晶闸管依次相隔60°触发,将电源交流电整流为直流电。 matlab仿真模型(开闭环都有)控制效果良好,可写报告。 ,三相桥式整流电路;双闭环控制;电流内环;电压外环;开环控制;MATLAB仿真模型。,基于双闭环控制的电压电流三相整流技术分析与Matlab仿真实现
MATLAB四旋翼仿真PID控制:从入门到精通的手把手教学,含QAV方法、模型代码、Simulink布局思路及详细图文说明,MATLAB四旋翼仿真 PID控制,有完全对应的说明文档,专门为初级学习者提供。 不用问在不在,直接拿即可。 亮点: 拥有和模型完全对应的讲解文档,相当于手把手教学。 内容包括: 1.QAV详细方法 2.模型及代码 3.模型2(提供simulink排版布局思路) 4.相关图片 5.使用备注 ,核心关键词:MATLAB四旋翼仿真; PID控制; 完全对应说明文档; 初级学习者; QAV详细方法; 模型及代码; simulink排版布局思路; 相关图片; 使用备注。,"MATLAB四旋翼仿真教程:PID控制详解与手把手教学"
定子磁链控制下的直接转矩控制系统MATLAB仿真研究及结果分析报告,基于定子磁链控制的直接转矩控制系统 MATLAB SIMULINK仿真模型(2018b)及说明报告,仿真结果良好。 报告第一部分讨论异步电动机的理论基础和数学模型,第二部分介绍直接转矩控制的具体原理,第三部分对调速系统中所用到的脉宽调制技术CFPWM、SVPWM进行了介绍,第四部分介绍了MATLAB仿真模型的搭建过程,第五部分对仿真结果进行了展示及讨论。 ,关键词:定子磁链控制;直接转矩控制系统;MATLAB SIMULINK仿真模型;异步电动机理论基础;数学模型;直接转矩控制原理;脉宽调制技术CFPWM;SVPWM;仿真结果。,基于MATLAB的异步电机直接转矩控制仿真研究报告
2025中小学教师编制考试教育理论基础知识必刷题库及答案.pptx
Python游戏编程源码-糖果消消消.zip
三相PWM整流器双闭环控制:电压外环电流内环的SVPWM调制策略及其代码编写详解——动态稳态特性优越的技术参考。,三相PWM整流器双闭环控制,电压外环,电流内环,PLL。 采用SVPWM调制,代码编写。 动态和稳态特性较好,可提供参考资料 ,三相PWM整流器;双闭环控制;电压外环;电流内环;PLL调制;SVPWM调制;动态特性;稳态特性;参考资料,三相PWM整流器双闭环SVPWM调制策略:稳态与动态特性优化参考指南
永磁同步电机滑膜观测器参数识别与仿真研究:转动惯量、阻尼系数及负载转矩的Matlab Simulink仿真分析文章及文档说明,永磁同步电机 滑膜观测器参数识别Matlab simulink仿真 包括转动惯量 阻尼系数 负载转矩 波形很好 跟踪很稳 包含仿真文件说明文档以及文章 ,关键词:永磁同步电机;滑膜观测器;参数识别;Matlab simulink仿真;转动惯量;阻尼系数;负载转矩;波形质量;跟踪稳定性;仿真文件;说明文档;文章。,基于Matlab Simulink仿真的永磁同步电机滑膜观测器参数识别及性能分析
基于永磁涡流的电梯缓冲结构设计.pdf
Python自动化办公源码-28 Python爬虫爬取网站的指定文章
MATLAB下的安全强化学习:利用Constraint Enforcement块训练代理实现目标接近任务,MATLAB代码:安全 强化学习 关键词:safe RL 仿真平台:MATLAB 主要内容:此代码展示了如何使用 Constraint Enforcement 块来训练强化学习 (RL) 代理。 此块计算最接近受约束和动作边界的代理输出的动作的修改控制动作。 训练强化学习代理需要 Reinforcement Learning Toolbox 。 在此示例中,代理的目标是使绿球尽可能靠近红球不断变化的目标位置。 具体步骤为创建用于收集数据的环境和代理,学习约束函数,使用约束强制训练代理,在没有约束执行的情况下训练代理。 ,核心关键词:safe RL; MATLAB代码; Constraint Enforcement 块; 强化学习代理; 绿球; 红球目标位置; 数据收集环境; 约束函数; 约束强制训练; 无约束执行训练。,MATLAB中安全强化学习训练的约束强化代理实现
基于EtherCAT总线网络的锂电池激光制片机控制系统,融合欧姆龙NX系列与威伦通触摸屏的智能制造方案。,锂电池激光模切机 欧姆龙NX1P2-1140DT,威伦通触摸屏,搭载从机扩展机架控制,I输入输出IO模块模拟量模块读取控制卷径计算 汇川IS620N总线伺服驱动器7轴控制,总线纠偏器控制 全自动锂电池激光制片机,整机采用EtherCAT总线网络节点控制, 伺服凸轮同步运动,主轴虚轴控制应用,卷径计算,速度计算,放卷张力控制。 触摸屏设计伺服驱动器报警代码,MC总线报警代码,欧姆龙伺服报警代码 张力摆臂控制,PID控制,等等 触摸屏产量统计,触摸屏故障统计,触摸屏与PLC对接信息交互,触摸屏多账户使用,多产品配方程序,优秀的触摸屏模板。 NX在收放卷控制的设计 欧姆龙NX系列实际项目程序+威纶触摸屏程序+新能源锂电设备 涵盖威纶通人机,故障记录功能,st+梯形图+FB块,注释齐全。 ,"新能源锂电池激光模切机:欧姆龙NX与威纶通触摸屏的智能控制与信息交互系统"
2025装载机理论考试试题库(含答案).pptx